Dr. Tobias Vossmeyer

Foto: Tobias Vossmeyer
Projektleiter
AG Weller
Anschrift
Büro
Kontakt
Schwerpunkte
- Sensors and Actuators Based on Self-Assembled Nanomaterials
- Nanoparticles for Bioapplications
- Nano- and Microparticles for Photonics and Mechanically Strengthened Composites
Curriculum Vitae
Diploma (Chemistry):
Philipps-Universität Marburg, Germany, 1992
Ph.D. (Dr. rer. nat):
Thesis on self-assembled superlattices consisting of semiconductor nanocrystals,
Hahn-Meitner-Institut (Berlin) and Technische Universität Berlin, Germany, 1995
Postdoc:
Research project on lithographically directed self-assembly of nanoparticles,
University of California at Los Angeles (UCLA), US, 1997-98
Manager and Group Leader:
Development of novel sensor devices based on self-assembled nanomaterials,
Materials Science Laboratory, Stuttgart Technology Center, Sony Deutschland GmbH, Germany,
1999-2006
Since 2007:
Senior Scientist, Project Leader and Lecturer at the Institute of Physical Chemistry (IPhCh),
Department of Chemistry, Universität Hamburg, Germany
Peer-Reviewed Journal Publications
56) Cross-Linked Gold-Nanoparticle Membrane Resonators as Microelectromechanical Vapor Sensors,
H. Schlicke, M. Behrens, C. J. Schröter, G. T. Dahl, H. Hartmann, T. Vossmeyer,
ACS Sensors 2, 540 (2017)
55) Determination of the packing fraction in photonic glass using synchrotron radiation nanotomography,
M. Ogurreck, J. J. do Rosario, E. W. Leib, D. Laipple, I. Greving, F. Marschall, A. Last, G. A. Schneider, T. Vossmeyer, H. Weller, F. Beckmann, M. Müller,
J. Synchrotron Rad. 23, 1440 (2016)
54) Gold nanoparticle superlattices: structure and cavities studied by GISAXS and PALS,
N. Olichwer, T. Koschine, A. Meyer, W. Egger, K. Rätzke, T. Vossmeyer,
RSC Adv. 6, 113163 (2016)
53) Gold nanoparticle superlattices: correlating chemiresistive responses with analyte sorption and swelling,
N. Olichwer, A. Meyer, M. Yesilmen; T. Vossmeyer,
J. Mater. Chem. C 4, 8214 (2016)
52) Tuning the Interaction of Nanoparticles from Repulsive to Attractive by Pressure,
M. A. Schroer, F. Schulz, F. Lehmkühler, J. Möller, A. J. Smith, H. Lange, T. Vossmeyer, G. Grübel,
J. Phys. Chem. C 120, 19856 (2016)
51) Electrostatically driven drumhead resonators based on freestanding membranes of cross-linked gold nanoparticles,
H. Schlicke, C. J. Schröter, T. Vossmeyer,
Nanoscale 8, 15880 (2016)
50) Ligand Layer Engineering to Control Stability and Interfacial Properties of Nanoparticles,
F. Schulz, G. Dahl, S. Besztejan, M. Schroer, F. Lehmkühler, G. Grübel, T. Vossmeyer, H. Lange,
Langmuir 32, 7897 (2016)
49) High-Temperature Stable Zirconia Particles Doped with Yttrium, Lanthanum, and Gadolinium,
E. W. Leib, R. M. Pasquarelli, M. Blankenburg, M. Müller, A. Schreyer, R. Janssen, H. Weller, T. Vossmeyer,
Part. Part. Syst. Charact. 33, 645 (2016)
48) Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles,
A. Petrov, H. Lehmann, M. Finsel, C. Klinke, H. Weller, T. Vossmeyer,
Langmuir 32, 848 (2016)
47) Effective PEGylation of gold nanorods,
F. Schulz, W. Friedrich, K. Hoppe, T. Vossmeyer, H. Weller, H. Lange,
Nanoscale 8, 7296 (2016)
46) Yttria-stabilized zirconia microspheres: novel building blocks for high-temperature photonics,
E. W. Leib, R. M. Pasquarelli, J. J. do Rosario, P. N. Dyachenko, S. Döring, A. Puchert, A. Y. Petrov, M. Eich, G. A. Schneider, R. Janssen, H. Weller, T. Vossmeyer,
J. Mater. Chem. C. 4, 62 (2016)
45) Resistive pressure sensors based on freestanding membranes of gold nanoparticles,
H. Schlicke, M. Rebber, S. Kunze, T. Vossmeyer,
Nanoscale 8, 183 (2016)
44) Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,
P. N. Dyachenko, J. J. do Rosario, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, M. Eich,
Opt. Express 23, A1236 (2015)
43) Freestanding Membranes of Cross-Linked Gold Nanoparticles: Novel Functional Materials for Electrostatic Actuators,
H. Schlicke, D. Battista, S. Kunze, C. J. Schröter, M. Eich, T. Vossmeyer,
ACS Appl. Mater. Interfaces 7, 15123 (2015)
42) Synthesis of tripodal catecholates and their immobilization on zinc oxide nanoparticles,
F. Klitsche, J. Ramcke, J. Migenda, A. Hensel, T. Vossmeyer, H. Weller, S. Gross, W. Maison,
Beilstein J. Org. Chem. 11, 678 (2015)
41) Intraspinal delivery of polyethylene glycol coated gold nanoparticles promotes functional recovery after spinal cord injury,
F. Papastefanaki, N. Poulia, R. Matsas, I. Jakovcevski, N. Djogo, G. Loers, F. Schulz, T. Vossmeyer, T. Martinovic, D. Ciric, H. Weller, M. Schachner,
Mol. Ther. 23, 993 (2015)
40) Synthesis and Thermal Stability of Zirconia and Yttria-Stabilized Zirconia Microspheres,
E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janßen, M. Müller, A. Schreyer, H. Weller, T. Vossmeyer,
J. Colloid Interface Sci. 448, 582 (2015)
39) Data-Adaptive Image-Denoising for Detecting and Quantifying Nanoparticle Entry in Mucosal Tissues Through Intravital 2-Photon Microscopy,
T. Bölke, L. Krapf, R. Orzekowsky-Schroeder, T. Vossmeyer, J. Dimitrijevic, H. Weller, A. Schüth, A. Klinger, G. Hüttmann, A. Gebert,
Beilstein J. Nanotechnol. 5, 2016 (2014)
38) Ceramic Photonic Glass for Broadband Omnidirectional Reflection,
P. N. Dyachenko, J. J. do Rosario, E. W. Leib, A. Yu. Petrov, R. Kubrin, G. A. Schneider, H. Weller, T. Vossmeyer, M. Eich,
ACS Photonics 1, 1127 (2014)
37) Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles,
F. Schulz, T. Homolka, N. G. Bastús, V. F. Puntes, H. Weller, T. Vossmeyer,
Langmuir 30, 10779 (2014)
36) CdSe/CdS-Quantum Rods: Fluorescent Probes for In Vivo Two-Photon Laser
Scanning Microscopy,
J. Dimitrijevic, L. Krapf, C. Wolter, C. Schmidtke, J.-P. Merkl, T. Jochum, A. Kornowski,
A. Schüth, A. Gebert, G. Hüttmann, T. Vossmeyer, H. Weller,
Nanoscale 6, 10413 (2014)
35) Elastic and Viscoelastic Properties of Cross-Linked Gold Nanoparticles Probed by
AFM Bulge Tests,
H. Schlicke, E. W. Leib, A. Petrov, J. H. Schröder, T. Vossmeyer,
J. Phys. Chem C 118, 4386 (2014)
34) Gold Nanoparticles Functionalized with a Fragment of the Neural Cell Adhesion
Molecule L1 Stimulate L1-Mediated Functions,
F. Schulz, D. Lutz, N. Rusche, N. G. Bastús, M. Stieben, M. Höltig, F. Grüner, H. Weller,
M. Schachner, T. Vossmeyer, G. Loers,
Nanoscale 5, 10605 (2013)
33) Effect of the Spacer Structure on the Stability of Gold Nanoparticles Functionalized with Monodentate Thiolated Poly(ethylene glycol) Ligands,
F. Schulz, T. Vossmeyer, N. G. Bastús, H. Weller,
Langmuir 29, 9897 (2013)
32) Cross-Linked Gold Nanoparticles on Polyethylene: Resistive Responses to
Tensile Strain and Vapors,
N. Olichwer, E. W. Leib, A. H. Halfar, A. Petrov, T. Vossmeyer,
ACS Appl. Mater. Interfaces 4, 6151 (2012)
31) Structural and Magnetic Properties of Ni2MnIn Heusler Thin Films Grown on Modulation
Doped InAs Heterostructures with Metamorphic Buffer,
S. Bohse, A. Zolotaryov, A. Volland, B. Landgraf, O. Albrecht, M. Bastjan, T. Vossmeyer,
D. Görlitz, C. Heyn, W. Hansen,
J. Cryst. Growth 338, 91 (2012)
30) Freestanding Films of Crosslinked Gold Nanoparticles Prepared via
Layer-by-Layer Spin-Coating,
H. Schlicke, J. H. Schröder, M. Trebbin, A. Petrov, M. Ijeh, H. Weller, T. Vossmeyer,
Nanotechnology 22, 305303 (2011)
29) Fluorescence Properties of Hydrophilic Semiconductor Nanoparticles with Tridentate Polyethylene Oxide Ligands,
M. Thiry, K. Boldt, M. S. Nikolic, F. Schulz, M. Ijeh, A. Panicker, T. Vossmeyer, H. Weller,
ACS Nano 5, 4965 (2011)
28) Influence of Growth Temperature on Phase and Intermixing in Ni2MnIn Heusler Films on InAs(001),
A. Zolotaryov, A. Volland, Ch. Heyn, D. Novikov, G. Stryganyuk, A. Kornowski,
T. Vossmeyer, O. Albrecht, E. Coric, W. Hansen,
J. Cryst. Growth 311, 2397 (2009)
27) Networked Gold-Nanoparticle Coatings on Polyethylene: Charge Transport and
Strain Sensitivity,
T. Vossmeyer, C. Stolte, M. Ijeh, A. Kornowski, H. Weller,
Adv. Funct. Mater. 18, 1611 (2008)
26) Gold Nanoparticle/Organic Networks as Chemiresistor Coatings: The Effect of Film Morphology on Vapor Sensitivity,
Y. Joseph, B. Guse, T. Vossmeyer, A. Yasuda,
J. Phys. Chem. C 112, 12507 (2008)
25) Vapor Sorption and Electrical Response of Au-Nanoparticle-Dendrimer Composites,
N. Krasteva, Y. Fogel, R. E. Bauer, K. Müllen, Y. Joseph, N. Matsuzawa, A. Yasuda,
T. Vossmeyer,
Adv. Funct. Mater. 17, 881 (2007)
24) Vapor Sensitivity of Networked Gold Nanoparticle Chemiresistors: Importance of Flexibility and Resistivity of the Interlinkage,
Y. Joseph, A. Peić, X. Chen, J. Michl, T. Vossmeyer, A. Yasuda,
J. Phys. Chem. C 111, 12855 (2007)
23) Hyperbranched Polythioethers: Preparation and use in Gold Nanoparticle Composite
Sensor Films,
O. Hien, H. Komber, B.I. Voit, N. Krasteva, A. Yasuda, T. Vossmeyer,
JNPN 2, 109 (2006)
22) Lithographic Patterning of Layer-by-Layer Self-Assembled Nanostructures Using a Water-Soluble Mask,
O. Harnack, I. Besnard, A. Yasuda, T. Vossmeyer,
Appl. Phys. Lett. 86, 034108 (2005)
21) V2O5-Nanofibres: Novel Gas Sensors with Extremely High Sensitivity to Amines,
I. Besnard, U. Schlecht, M. Burghard, A. Yasuda, T. Vossmeyer,
Sens. Actuators, B 106, 730 (2005)
20) A Direct Synthetic Approach to Vanadium Pentoxide Nanofibres Modified with Silver-Nanoparticles,
U. Schlecht, B. Guse, I. Raible, T. Vossmeyer, M. Burghard,
Chem. Commun. 2184 (2004)
19) Optical and Electrical Properties of 3-Dimensional Interlinked Au-Nanoparticle Assemblies,
J. M. Wessels, H.-G. Nothofer, W. E. Ford, F. von Wrochem, F. Scholz, T. Vossmeyer, A. Schroeter, H. Weller, A. Yasuda,
J. Am. Chem. Soc. 126, 3349 (2004)
18) Chemiresistor Coatings from Pt- and Au-Nanoparticle/Nonanedithiol films: Sensitivity to Gases and Solvent Vapors,
Y. Joseph, B. Guse, A. Yasuda, T. Vossmeyer,
Sens. Actuators, B 98, 188, (2004)
17) Vapour Sorption in Self-Assembled Gold Nanoparticle/Dendrimer Films Studied by Specular Neutron Reflectometry,
N. Krasteva, R. Krustev, A. Yasuda, T. Vossmeyer,
Langmuir 19, 7754 (2003)
16) Self-Assembled Gold-Nanoparticle/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis, Charge Transport, and Vapor-Sensing Properties,
Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlögl, A. Yasuda, T. Vossmeyer,
J. Phys. Chem. B 107, 7406 (2003)
15) Gold Nanoparticle/PPI-Dendrimer Based Chemiresistors: Vapor-Sensing Properties as a Function of the Dendrimer Size,
N. Krasteva, B. Guse, I. Besnard, A. Yasuda, T. Vossmeyer,
Sens. Actuators, B 92, 137 (2003)
14) Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,
N. Krasteva, I. Besnard, B. Guse, R.E. Bauer, K. Müllen, A. Yasuda, T. Vossmeyer,
Nano Lett. 2, 551 (2002)
13) Gold Nanoparticle/Polyphenylen Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,
T. Vossmeyer, B. Guse, I. Besnard, R.E. Bauer, K. Müllen, A. Yasuda,
Adv. Mater. 14, 238 (2002)
12) Combinatorial Approaches Toward Patterning Nanocrystals,
T. Vossmeyer, S. Jia, E. DeIonno, M. R. Diehl, S.-H. Kim, X. Peng, A. P. Alivisatos, J. R. Heath,
J. Appl. Phys. 84, 3664 (1998)
11) Quantum Dot Superlattices,
C. P. Collier, T. Vossmeyer, J. R. Heath,
Ann. Rev. Phys. Chem. 49, 371 (1998)
10) Surprising Superstructures: Rings,
T. Vossmeyer, S.-W. Chung, W. M. Gelbart, J. R. Heath,
Adv. Mater. 10, 351 (1998)
9) Size Dependence of Structural and Dynamic Properties of CdS-Nanoparticles,
J. Rockenberger, L. Tröger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus, H. Weller,
Ber. Bunsen-Ges. Phys. Chem. 101, 1613 (1997)
8) Light Directed Assembly of Nanoparticles,
T. Vossmeyer, E. DeIonno, J. R. Heath,
Angew. Chem. 109, 1123 (1997), Angew. Chem. Int. Ed. 36, 1080 (1997)
7) EXAFS Studies on the Size Dependence of Structural and Dynamic Properties of
CdS Nanoparticles,
J. Rockenberger, L. Tröger, A. Kornowski, T. Vossmeyer, A. Eychmüller, J. Feldhaus, H. Weller,
J. Phys. Chem. B. 101, 2691 (1997)
6) A Double-Layer Superlattice Structure Built up of Cd32S14(SCH2CH(OH)CH3)36 4H2O Clusters,
T. Vossmeyer, G. Reck, B. Schulz, L. Katsikas, H. Weller,
J. Am. Chem. Soc. 117, 12881 (1995)
5) A New Three Dimensional Crystal Structure of a Cadmium Thiolate,
T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller,
Inorg. Chem. 34, 4926 (1995)
4) A Double-Diamond Superlattice Built up of Cd17S4(SCH2CH2OH)26 Clusters,
T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller,
Science 267, 1476 (1995)
3) CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift,
T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine,
A. Eychmüller, H. Weller,
J. Phys. Chem. 98, 7665 (1994)
2) Transient Photobleaching in the Quantum Dot Quantum Well CdS/HgS/CdS,
A. Eychmüller, T. Vossmeyer, A. Mews, H. Weller,
J. Lumin. 58, 223 (1994)
1) Hepatocyte-Conditioned Medium Potentiates Insulin Like Growth Factor (IGF) 1 and 2 Stimulated DNA Synthesis of Cultured Fat Storing Cells,
A. M. Gressner, A. Brenzel, T. Vossmeyer,
Liver 13, 86 (1993)
Current Research Activities
Our current research activities focus on the three major areas A, B and C:
A) Sensors and Actuators Based on Self-Assembled Nanomaterials
In this area we explore novel types of chemiresistors and strain gauges based on self-assembled films of gold nanoparticles (AuNP). Currently we are starting activities to evaluate the potential of freestanding nanoparticle-based membranes as actuators and components in microelectromechanical systems (MEMS).
The figure below illustrates some of these activities. For more information click here.
Selected Publications:
[1] Cross-Linked Gold Nanoparticles on Polyethylene: Resistive Responses to Tensile Strain
and Vapors,
N. Olichwer, E. W. Leib, A. H. Halfar, A. Petrov, T. Vossmeyer,
ACS Appl. Mater. Interfaces 4, 6151 (2012), DOI: 10.1021/am301780b
[2] Elastic and Viscoelastic Properties of Cross-Linked Gold Nanoparticles Probed by AFM
Bulge Tests,
H. Schlicke, E. W. Leib, A. Petrov, J. H. Schröder, T. Vossmeyer,
J. Phys. Chem C 118, 4386 (2014), DOI: 10.1021/jp4091969
[3] Freestanding Membranes of Cross-Linked Gold Nanoparticles: Novel Functional Materials for Electrostatic Actuators,
H. Schlicke, D. Battista, S. Kunze, C. J. Schröter, M. Eich, T. Vossmeyer,
ACS Appl. Mater. Interfaces 7, 15123, (2015), DOI: 10.1021/acsami.5b02691
[4] Resistive pressure sensors based on freestanding membranes of gold nanoparticles,
H. Schlicke, M. Rebber, S. Kunze, T. Vossmeyer,
Nanoscale 8, 183 (2016), DOI: 10.1039/c5nr06937h
[5] Electrostatically driven drumhead resonators based on freestanding membranes of cross-
linked gold nanoparticles,
H. Schlicke, C. J. Schröter, T. Vossmeyer,
Nanoscale 8, 15880 (2016), DOI: 10.1039/C6NR02654K
B) Nanoparticles for Bioapplications
Here, we study the synthesis and biofunctionalization of gold nanoparticles (AuNP) and semiconductor nanocrystals, and explore their application as probes for various imaging techniques. Further, in close collaboration with the University Medical Center Hamburg-Eppendorf we use biofunctionalized AuNP as model systems to develop new approaches for the treatment of acute and chronic injuries of the mammalian nervous system. The figure below illustrates some of these activities. For more information click here.
Selected Publications:
[1] Fluorescence Properties of Hydrophilic Semiconductor Nanoparticles with Tridentate Polyethylene Oxide Ligands,
M. Thiry, K. Boldt, M. S. Nikolic, F. Schulz, M. Ijeh, A. Panicker, T. Vossmeyer, H. Weller,
ACS Nano 5, 4965 (2011), DOI:10.1021/nn201065y
[2] Effect of the Spacer Structure on the Stability of Gold Nanoparticles Functionalized with Monodentate Thiolated Poly(ethylene glycol) Ligands,
F. Schulz, T. Vossmeyer, N. G. Bastús, H. Weller,
Langmuir 29, 9897 (2013), DOI: 10.1021/la401956c
[3] Gold Nanoparticles Functionalized with a Fragment of the Neural Cell Adhesion Molecule
L1 Stimulate L1-Mediated Functions, F. Schulz, D. Lutz, N. Rusche, N. G. Bastús,
M. Stieben, M. Höltig, F. Grüner, H. Weller, M. Schachner, T. Vossmeyer, G. Loers,
Nanoscale 5, 10605 (2013), DOI: 10.1039/C3NR02707D
[4] CdSe/CdS-Quantum Rods: Fluorescent Probes for in vivo Two-Photon Laser Scanning Microscopy,
J. Dimitrijevic, L. Krapf, C. Wolter, C. Schmidtke, J.-P. Merkl, T. Jochum,
A. Kornowski, A. Schüth, A. Gebert, G. Hüttmann, T. Vossmeyer, H. Weller,
Nanoscale 6, 10413 (2014), DOI: 10.1039/c4nr02702g
[5] Little Adjustments Significantly Improve the Turkevich Synthesis of Gold Nanoparticles,
F. Schulz, T. Homolka, N. G. Bastús, V. F. Puntes, H. Weller, T. Vossmeyer,
Langmuir 30, 10779 (2014), DOI: 10.1021/la503209b
C) Nano- and Microparticles for Photonics and Mechanically Strengthened Composites
As a member of the Collaborative Research Center “SFB 986 – Tailor-Made Multi-Scale Materials Systems – M3” we recently started activities aiming at the synthesis of nano- and microparticles enabling the assembly of novel direct photonic materials. Special focus is placed on the preparation of high refractive index materials and metallo-dielectric core-shell-shell structures resisting operating temperatures well-above 1000 °C. As theoretically predicted by our partners of the Hamburg University of Technology (TUHH) such photonic materials can afford extremely efficient thermal barrier coatings (TBCs) or absorbers/emitters boosting the efficiency of thermophotovoltaic (TPV) cells.
The figure below illustrates some of these activities. For more information click here.
In another project of the SFB 986 we are aiming at the development of hierarchically ordered composites consisting of inorganic nanoparticles crosslinked by specially designed organic compounds. In such materials the inorganic particles provide hardness and stability, whereas the organic compounds function as built-in shock-absorbers to increase the material's resistance to fracturing. For example, these materials are interesting for the development of lightweight, scratch-resistant coatings for displays of mobile phones and tablet-PCs. Here, our task focuses on the synthesis of inorganic nanoparticles of various compositions, sizes and shapes. These particles are the fundamental building blocks of the intended hierarchically ordered materials.
Selected Publications:
[1] Synthesis and Thermal Stability of Zirconia and Yttria-Stabilized Zirconia Microspheres,
E. W. Leib, U. Vainio, R. M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janßen, M. Müller,
A. Schreyer, H. Weller, T. Vossmeyer,
J. Colloid Interface Sci. 448, 582 (2015), DOI: 10.1016/j.jcis.2015.02.049
[2] Yttria-stabilized zirconia microspheres: novel building blocks for high-temperature photonics,
E. W. Leib, R. M. Pasquarelli, J. J. do Rosario, P. N. Dyachenko, S. Döring, A. Puchert, A. Yu. Petrov,
M. Eich, G. Schneider, R. Janssen, H. Weller, T. Vossmeyer,
J. Mater. Chem. C 4, 62 (2016), DOI: 10.1039/c5tc03260a
[3] High-Temperature Stable Zirconia Particles Doped with Yttrium, Lanthanum, and Gadolinium,
E. W. Leib, R. M. Pasquarelli, M. Blankenburg, M. Müller, A. Schreyer, R. Janssen, H. Weller, T. Vossmeyer,
Part. Part. Syst. Charact. 33, 645 (2016), DOI: 10.1002/ppsc.201600069