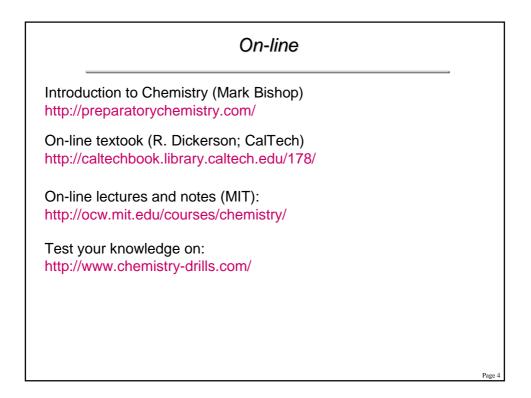
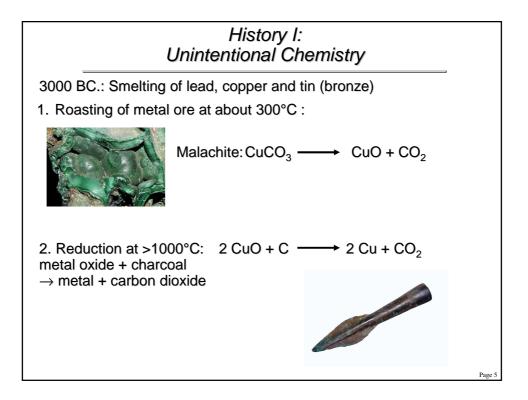

Chemistry I


PD Dr. Christoph Wutz


christoph.wutz@chemie.uni-hamburg.de

http://www.chemie.uni-hamburg.de/tmc/wutz/

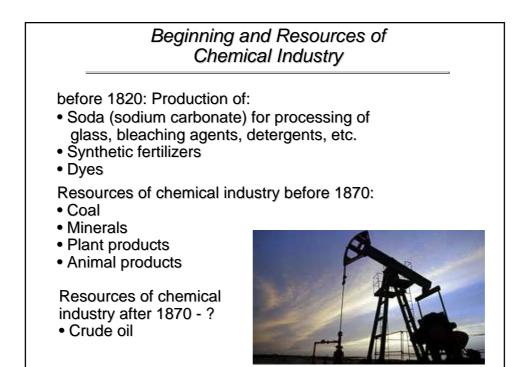
Contents	
 Introduction Books, Internet, History, Basic Concepts General Chemistry Atomic Structure Periodic System Chemical Bond, Molecules Physical Chemistry State of Matter, Phase Transitions, Separation Proc. Chemical Reaction Thermodynamics, Kinetics Inorganic Chemistry Acids/Bases, pH-value Salts, Solubility Redox reactions Electrochemistry 	
	Page 2

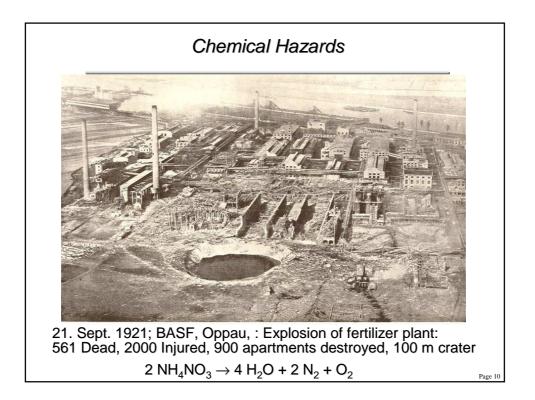
History II: Alchemy	
Intentional, traditional, non-scientific chemistry; Protoscience: Precursor of modern chemistry: • Creation of the "philosopher's stone," (catalyst?)⇒ • Conversion of base metals into solver or gold • Search for the universal solvent "alkahest"	
Notion of elements:GreeceBuddhismChina (Tao)Fire (hot)FireFireWater (wet)WaterWaterEarth (dry)EarthEarthAir (cold)WindSpirit/EtherSpaceWoodMetal	
	covery of Phosphor Hennig Brand (1669) _{rage 6}

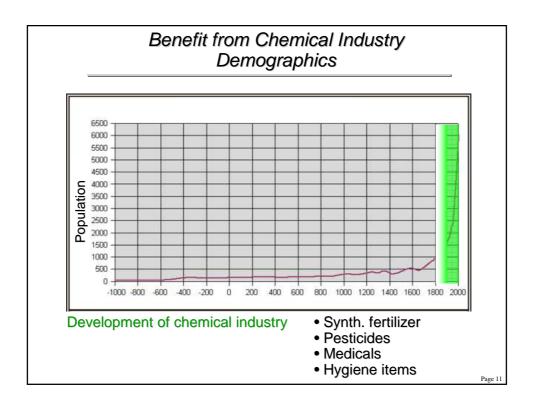
History III Chemistry as Natural Science After 17. Jh.: Scientific chemistry: Exemption from dogma and religion. Rational conclusions based of observation and experiments. Robert Boyle (1627-1691) The Sceptical Chymist" (1661) Antoine Lavoisier (1743-1794) Justus v. Liebig (1803-1873) Carl W. Scheele

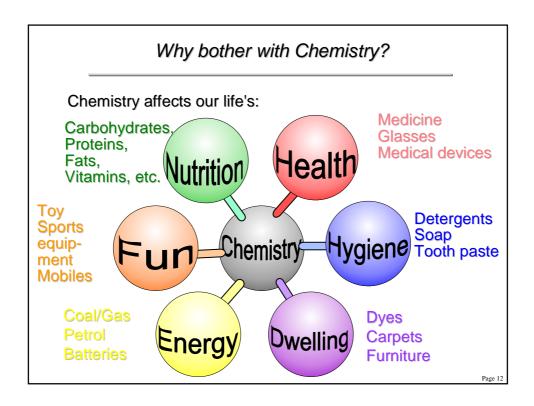
Joseph Priestley (1733-1804) Engl. researcher Invent.: NH_3 , N_2O , CO, SO_2

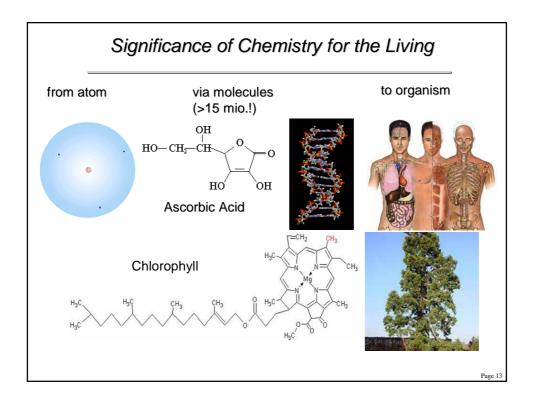
(1742-1786)Swed. Pharm. O_2 , Cl_2 , Ba, Mn; HCN, lactic acid

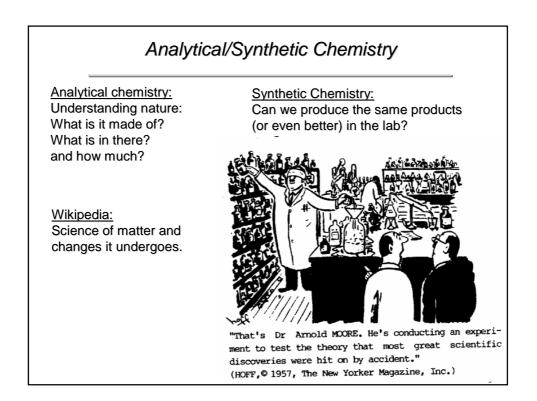

French Chem. Oxidation

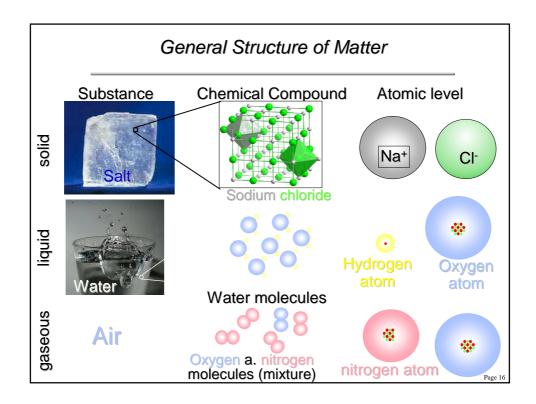


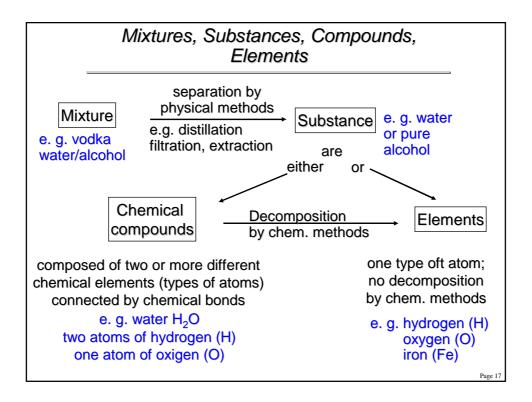

German Chem. Chem.Analysis

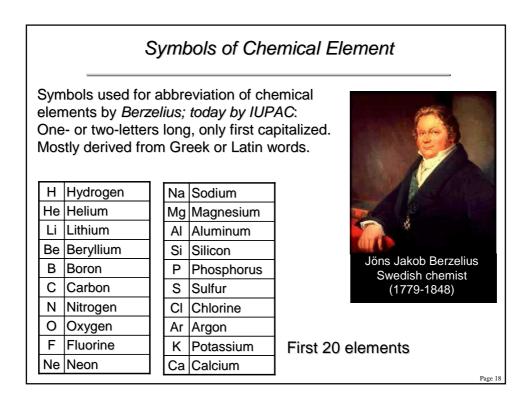

Page

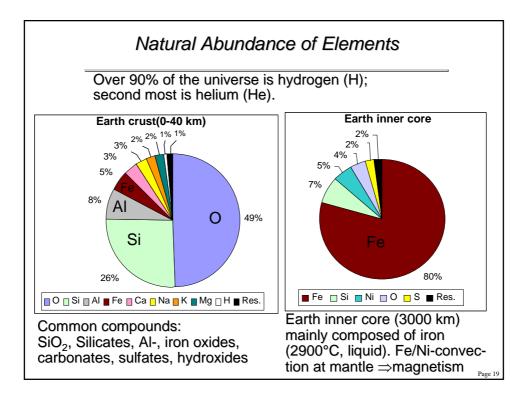

Difference Chemistry-Physics							
Physics: (Change of) State of Matter Example	Chemistry: Change of Composi- tion of Matter						
Iron: metallic, shiny, conductive, malleable.							
Heating iron \Rightarrow melting cooling \Rightarrow solidification. Properties unchanged.	Iron in humid air \Rightarrow gets rusty Rust: red-brown, non-conductive not moldable						
Reversible change of state Another examination	\Rightarrow Change of matter mple:						
Platinum wire heating to red-hot Cooling: No change in prop. Emission of light: physical proc.	Heating magnesium \Rightarrow combustion with light emission \Rightarrow magnesium oxide (white powder) \Rightarrow change of matter						
Last Example:							
Heavy cooling of air \Rightarrow liquefaction Slow warming up (distillation) \Rightarrow Separation of oxygen and nitrogen Properties unchanged.	Respired oxygen converts carbohydrates into CO_2+H_2O . Energy is released. \Rightarrow Chemical process.						
Liquefaction, evaporation, melting, distillation: physical processes	Combustion, oxidation, chem. synthesis: Chemical proc.						

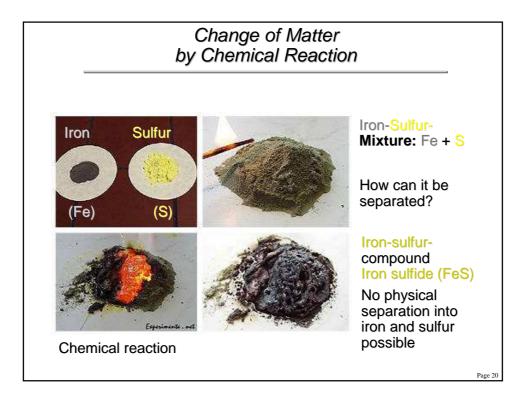


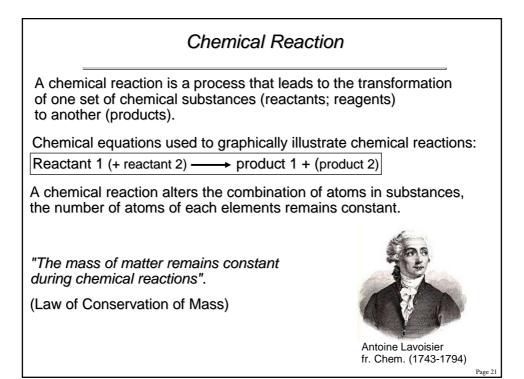


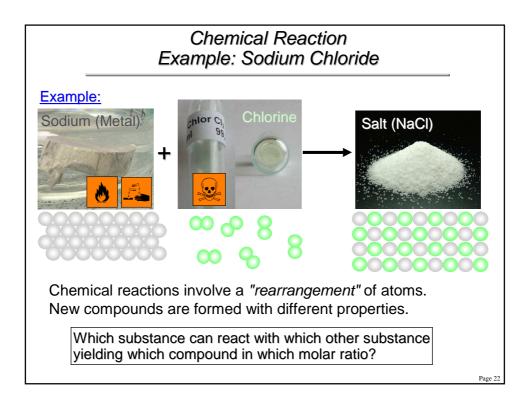


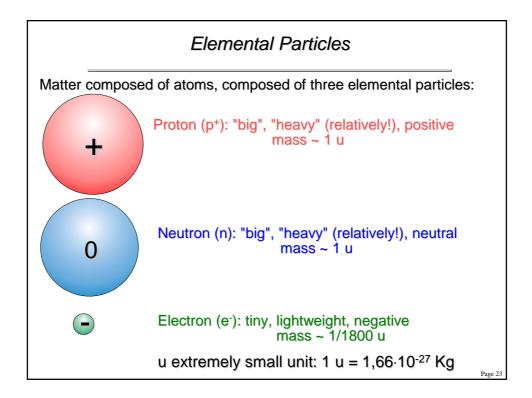


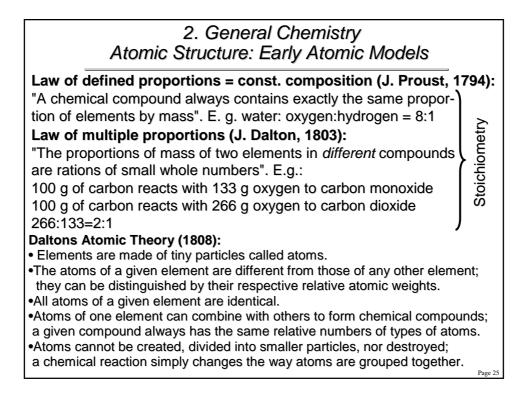


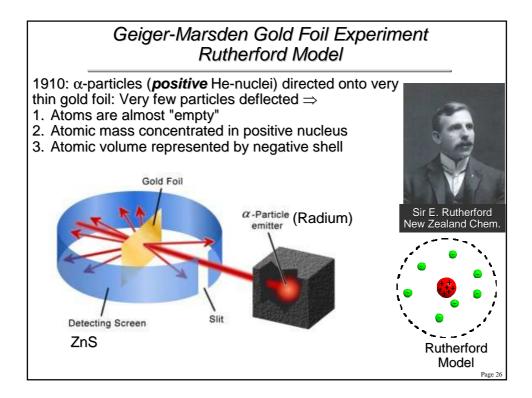

Measure	Symbol	Unit	Symbol
Length	1	Meter	m
Mass	т	Gramm	g
Volume	V	Liter	L
Density	ρ	Gramm per cm ³	g/cm ³
Temperature	Т	Kelvin	К
Force	F	Newton	N = kg⋅m/s
Pressure	р	Pascal	$Pa = N/m^2$
Energy	E	Joule	J = kg·m²/s
Amount of substance	n	Mole	mol
Molar Mass	Μ	Mass per Mole; $M = m/n$	g/mol
Molar concentration	С	Mole per volume; <i>c=n/V</i>	mol/l
Molar Enthalpy	Н	Joule per Mol	J/mol
Molar Entropy	S		J/mol·K

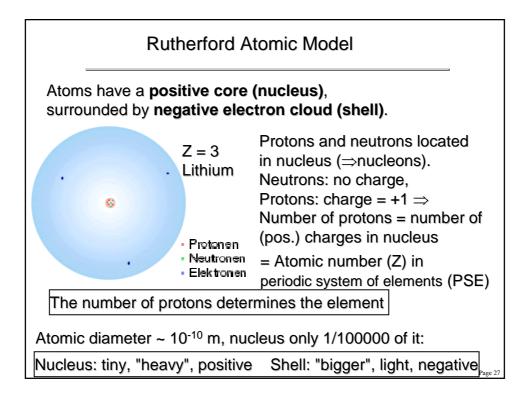


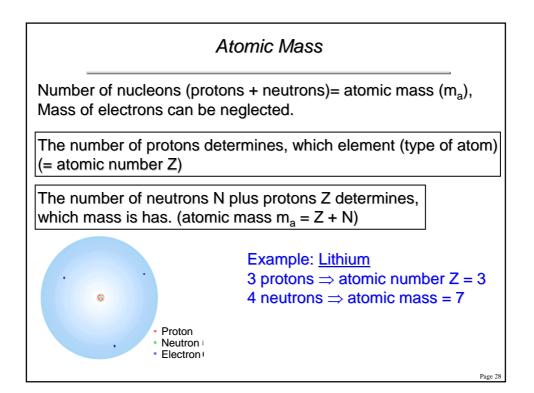


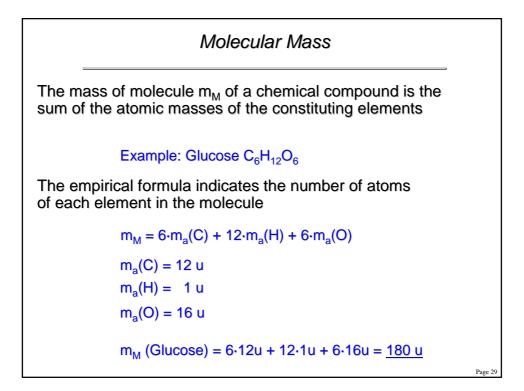


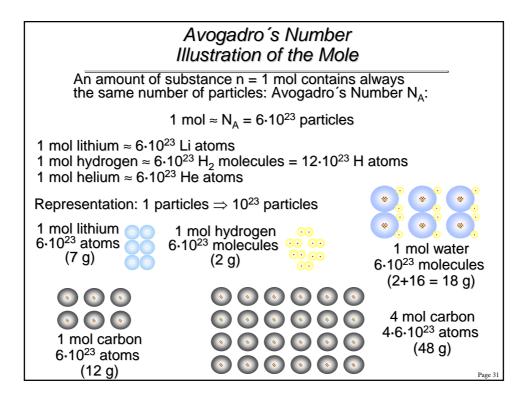


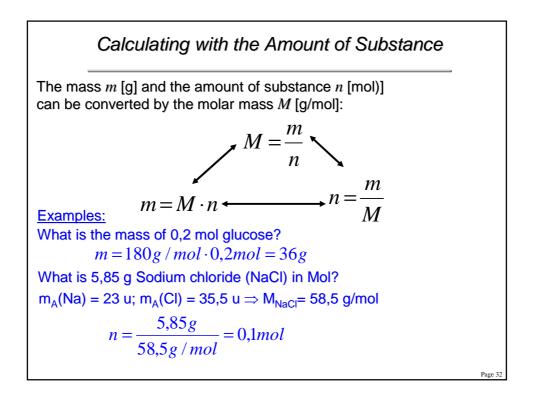


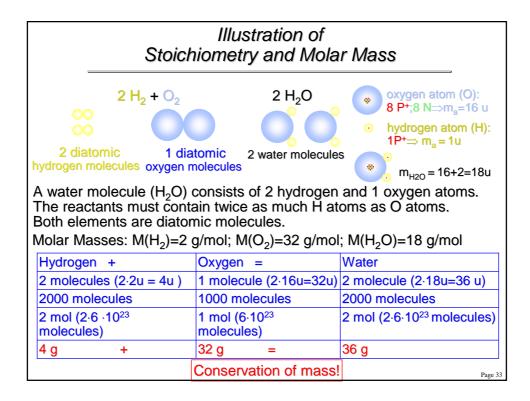


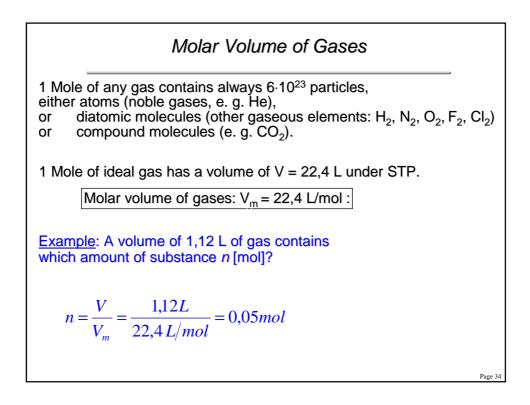


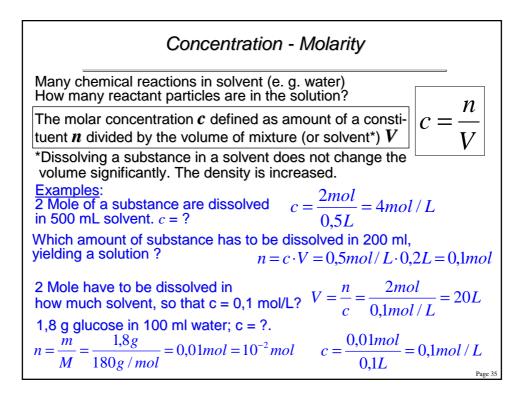

Radiation								
Radiation is a process in which waves or particles travel through a medium or space \Rightarrow Transport of energy or mass. Dualism: Each radiation has wave <i>and</i> particle character.								
Electromagnetic waves (light, micro-, radio-, x-ray) Energy ~ frequency ~1/wave length								
Radioactive Atomic nucle	decay: sus emits particle	e or wave						
Name	Character	Mass	Charge					
α -radiation	He nucleus: 2 P ⁺ ; 2 N	4 u	+2					
β-radiation	Electron	1/1823 u	-1					
γ-radiation	electromag. wave	-	- Page 24					

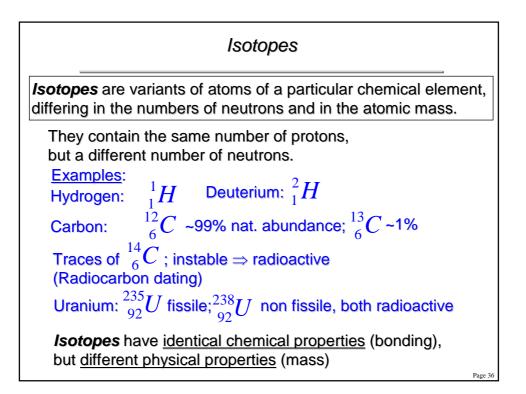


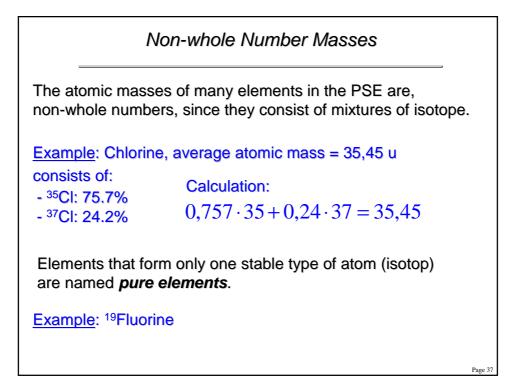


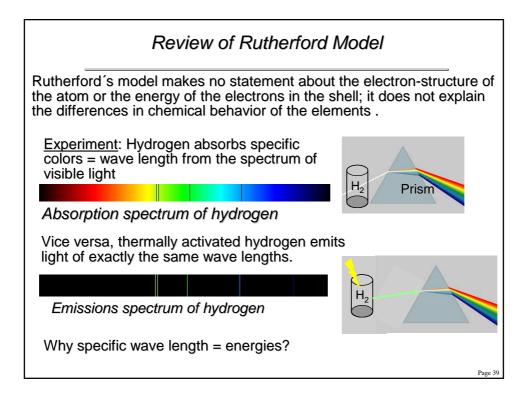


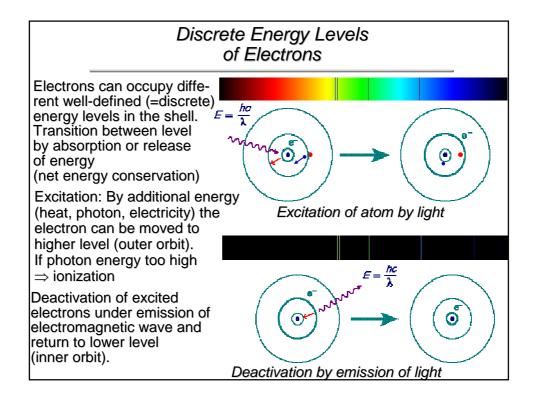


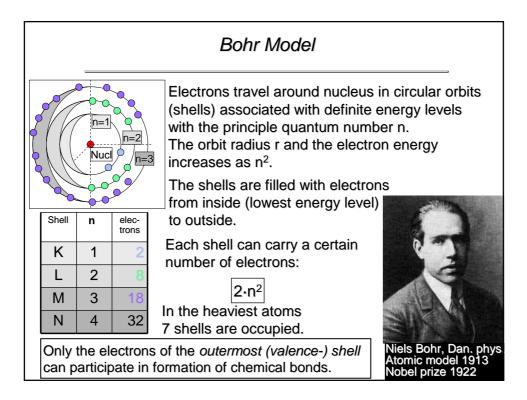

Amount of Substance, Mole								
The mass unit u measures extremely small quantities (single molecules): The Amount of Substance n (or Chemical Amount) with unit Mole is a quantity that measures the size of an ensemble of elementary entities (atoms, molecules other particles) on lab-scale.								
The Am	The Amount of Substance is no mass, nor a number of entities - it is, however, closely related to both:							
Molar M	The Amount of Substance n is the mass m of a portion related to the Molar Mass M of the substance. The Molar Mass M is a substance-specific quantity with the unit [g/mol].							
Examples:	Atomic/molecular mass	Molar Mass M]					
	Li = 7 u	M(Li) = 7 g/mol						
	$H_2O = 18 \text{ u}$ $M(H_2O) = 18 \text{ g/mol}$							
	$H_2 = 2 u$	$M(H_2) = 2 g/mol$]					
	$\overline{C_6}H_{12}O_6 = 180 \text{ u}$	$M(C_6H_{12}O_6) = 180 \text{ g/mol}$]					
One Mo	e Li weights 7 g, 1 Mole v	water \approx 18 g; 2 Mol H ₂ O \approx 36	g. Page 30					

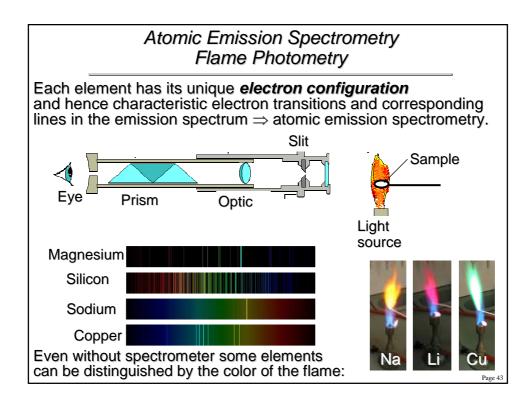


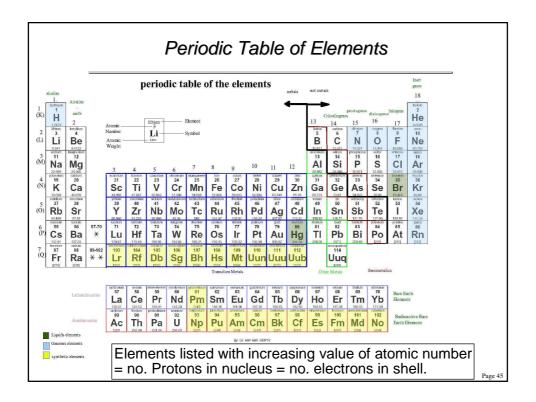


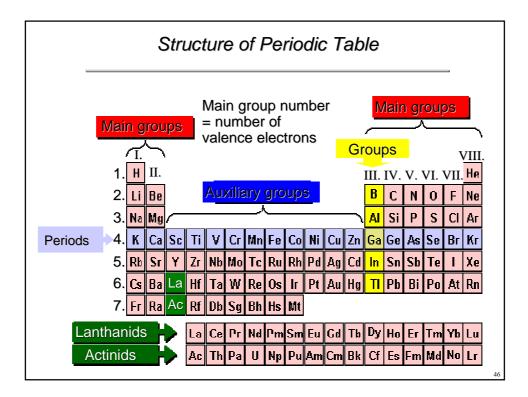


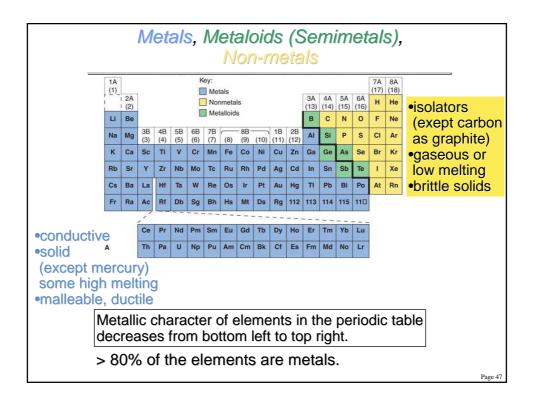


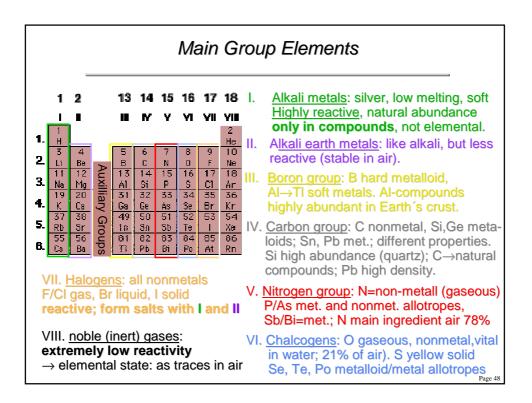


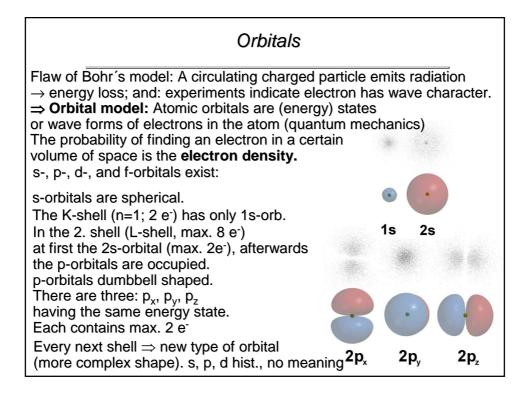

lons						
Atoms contain as many electrons in the shell as protons in the nucleus and are consequently neutral.						
lons are atoms or molecules in which the number of electrons is not equal to the total number of protons, giving it a net positive or negative electrical charge.						
<i>lons</i> have completely different properties than the resp. atoms !						
Examples: Na \rightarrow Na ⁺ + e ⁻ Positive ions = cations ,						
$CI + e^- \rightarrow CI^-$ Negative ions = anions.						
Cations derived from metal name (sodium (cat)ion, silver (cat)ion) or have the suffix $-ium$ (NH ₄ ⁺ = ammonium ion)						
Anions from non-metal atoms have the suffix $-ide$ (chloride) in compounds with oxygen $-ate$ (SO ₄ ²⁻ =sulfate) or $-ite$ (SO ₃ ²⁻ =sulfite)						
Ions can carry multiple charges: <u>Examples</u> : Al ³⁺ , O ²⁻						

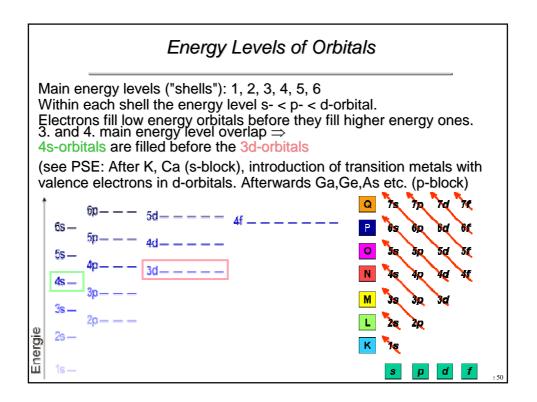


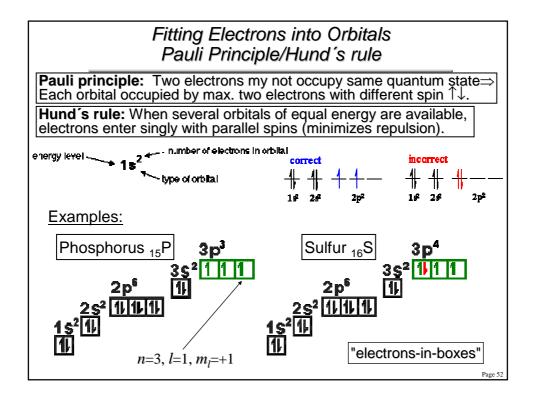



Element	Z	n=1 max. 2	n=2 max. 8	n=3 max 8+10	n=4
Н	1	1			
He	2	2			
Li	3	2	1		
Be	4	2	2		
F	9	2	7		
Ne	10	2	8		
Na	11	2	8	1	
Mg	12	2	8	2	
CI	17	2	8	7	
Ar	18	2	8	8	



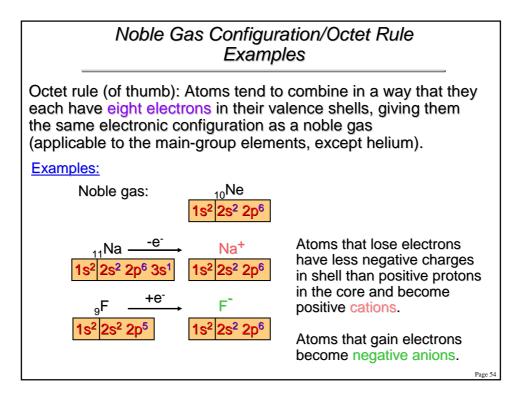

								n) of Ele by Men	
Reihen	Gruppe I. R ² 0	Gruppe II. RO	Gruppe III. R ² O ³	Gruppe IV. RH ⁴ RO ²	Gruppe V. RH ³ R ² 0 ⁵	Gruppe VI. RH ² RO ³	Gruppe VII. RH R ² 0 ⁷	Gruppe VIII. RO4	Ex.
3 4 5 6 7	(—) (Au=199	Be=9,4 Mg=24 Ca=40 Zn=65 Sr=87	$Al = 27,3 \\ - = 44 \\ Ga _{68} \\ PYt = 88 \\ PTt = 113 \\ PDi = 138 \\ PTt = 178 \\ PTt = 178$	Ti == 48	V = 51 As = 75 Nb = 94 Sb = 122 Ta = 182	Cr=52 Se=78 Mo=96 Te=125 W=184	Mn = 55 Br = 80 - = 100	Fe=56, Co=59, Ni=59, Cu=63 Ru=104, Rh=104, Pd=106, Ag=108	Dimitri Mendeleev Periodic table (1869)
Pr	opertie	es of G	<u>allium</u> Pred	(Ga) iction	F	Reality	*****	СТОЛЕТИЕ ПЕЛ	РИОДИЧЕСКОГО ЗАКОНА
De Me Ox	omic r ensity elting kide hloride	Temp.	~ 68 ~ 5,9	g/cm ³ C	6 5 29 0	59,72 5,91 g/o 9,8℃ Ga₂O₃ GaCl₃	1.5.1	АЦ 227.4 92 = 6869 94 ил #16/13 ПОЧТАС	CCCP1969 OK





Quantum numbers describe the energy of electrons in atoms.								
Name Symbol Orbital meaning Range Value								
			of Values	Example				
Principal (prim.) q.n.	n	shell (main energy level)	$n \ge 1$	<i>n</i> = 1,2,3,				
Azimuthal q.n.	l	subshell: $s \Rightarrow 0$	$0 \le l \ge n-1$	for $n = 3$:				
(angular momentum)		(orbital) $p \Rightarrow 1$		1 = 0, 1, 2				
		$d \Rightarrow 2$		(s,p,d)				
Magnetic q.n.	m_{l}	orientation of	$-l \leq m_l \geq +l$	for $l = 1$ (p-Orb.)				
(Projection of	L L	subshell shape	E C	$m_l = -1, 0, +1$				
angular momentum)				p_x, p_y, p_z				
Spin q.n.	m_s	Spin of electron	1⁄2 : clockwis	е				
	5		-1/2: counter-	clockwise				

"Full" Outer Valence Shell Noble Gas Configuration

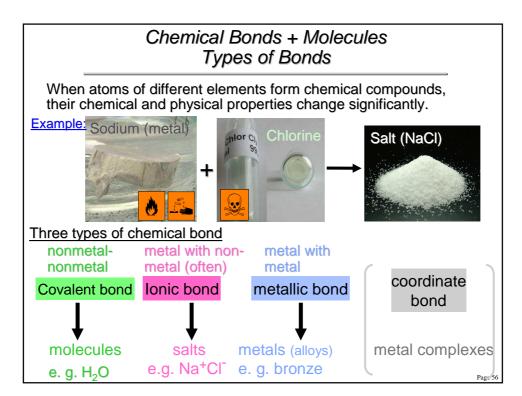

The number of valence electrons (VE) in the outer shell determines the chemical behavior.

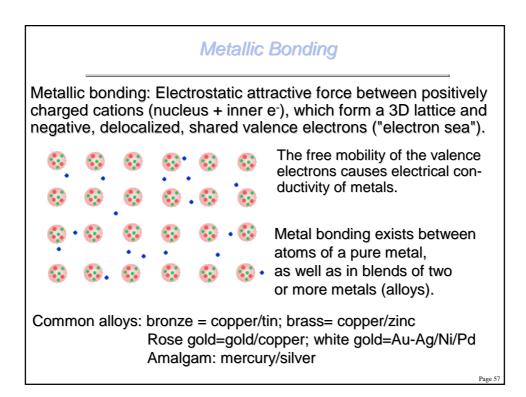
"Full", closed-shell configuration have a favorable low energy.

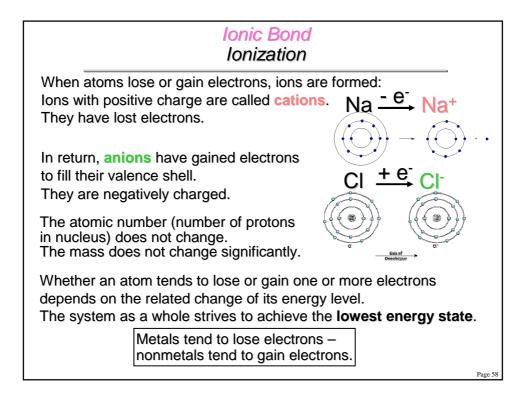
Elements with a closed-shell (no valence electrons) (18. group or VIII. main group: He, Ne, Ar, etc.) show very little tendency to participate in chemical reactions Since they are all gases they are called **noble** (or inert) **gases**.

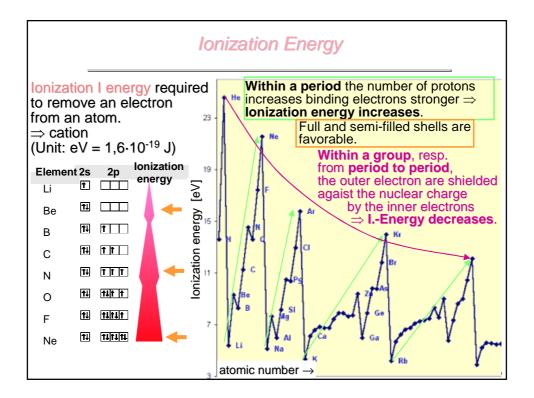
Electron configurations with a closed-shell are called noble gas configuration.

Atoms of other elements can reach lower energy states by undergoing chemical reactions. By loss or gain of electrons they can reach a *noble gas electron configuration*.

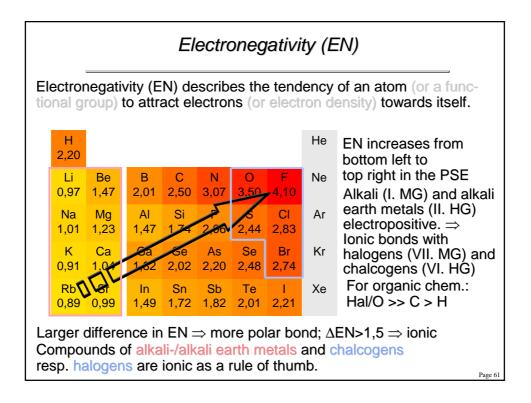

More Examples for Noble Gas Configuration

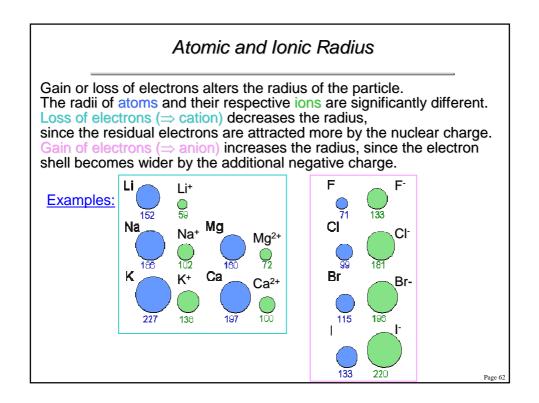

Potassium ($_{19}$ K, alkali) looses 1 e⁻, becomes K⁺ cation, with the same electron configuration like Argon $_{18}$ Ar. Its chemical and physical properties are of cause completely different (different number of protons).

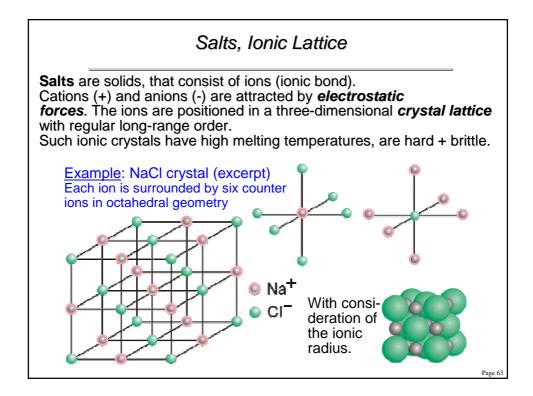

The same electron configuration achieves chlorine $(_{17}CI, halogen)$ by gaining 1e⁻ becoming Cl⁻ (chloride ion).

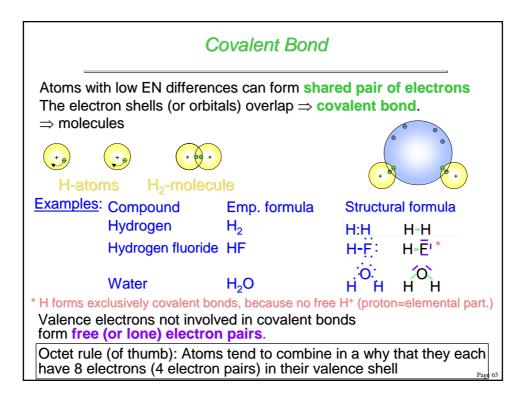

In a similar manner calcium ($_{20}$ Ca, alkali earth metal) can lose two e⁻ \Rightarrow Ca²⁺, or $_{16}$ S + 2 e⁻ \rightarrow S²⁻ both ions have the same electron configuration as $_{18}$ Ar

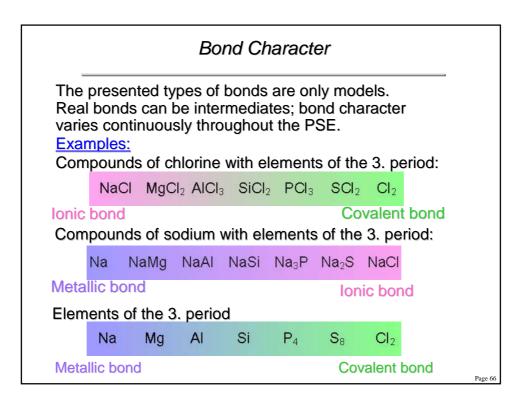
By loss or gain of electrons particles reach the favorable, low energy closed-shell (noble gas configuration).

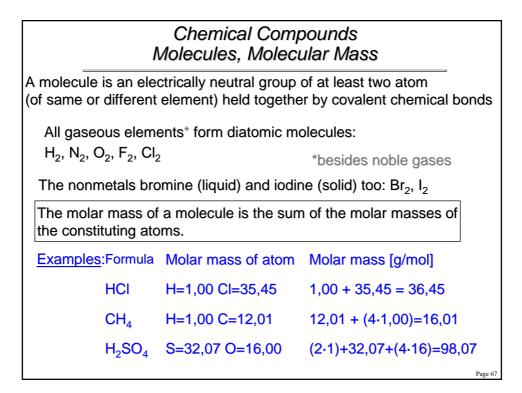


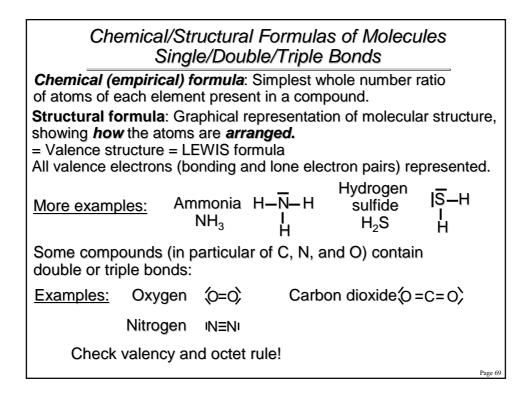


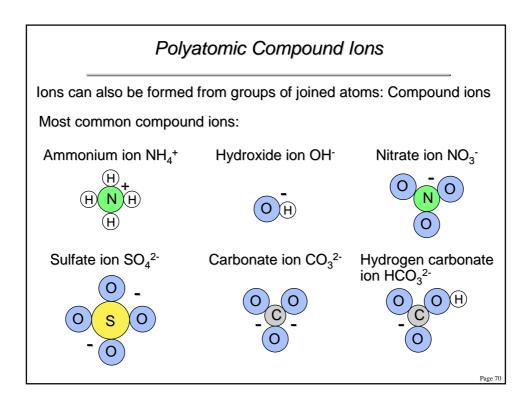


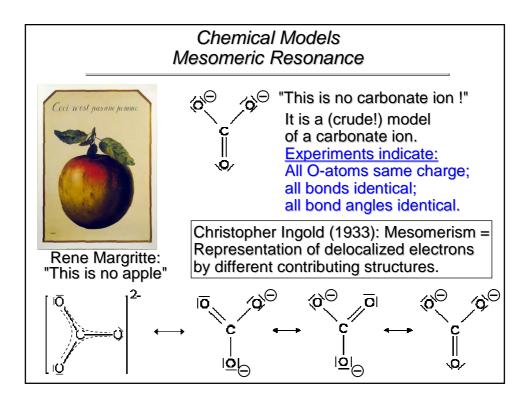

Electron Affinity								
The electron affinity EA is the counter part of the <i>ionization energy</i> . Amount of energy <i>released</i> when an electron is added to an atom \Rightarrow negative anion.								
Positive values:	H -0.75	Ele	ectror	n affii	nities	(eV)		He >0
System would go to higher	Li -0.62	Be >0	B -0.28	C -1.26	N +0.07	0 -1.46	F -3.40	Ne ≻0
energy state \Rightarrow gain of electrons not possible.	Na -0.55	Mg >0	AI -0.44	Si -1.28	P -0.75	S -2.08	CI -3,62	Ar >0
Negative EA-values: Energy is released.	K -0.5	Ca >0	Ga -0.3	Ge -1.2	As -0.81	Se	Br	Kr >0
Halogens and chalcogens	Rb -0.49	Sr >0	In -0.3	S n -1.2	Sb -1.07	Te -1.97	 -3.06	Xe >0
have high electron affinities ⇒Large amounts of energy is	Cs -0.47	Ba >0	TI -0.2	Pb -0.36	Bi -0.95	Ро	At	Rn
released, if they gain electrons.	Fr	Ra						

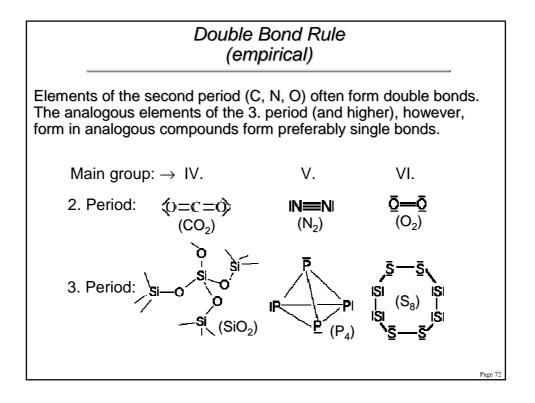


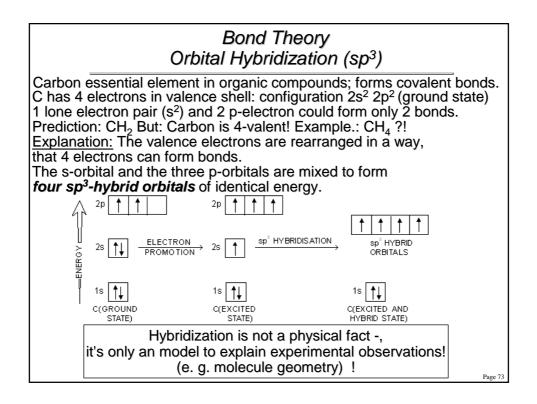


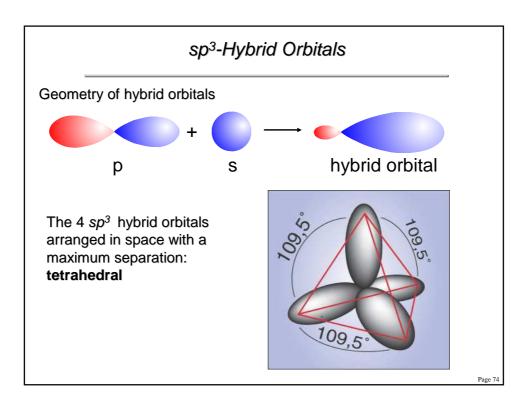

Chemical Formulas of Salts								
The ionic crystal lattice is a continuous structure with no overall charge (<i>electrical neutral</i>). Positive charges of cations are compensated by negative charges of anions \Rightarrow defined molar ratio (stoichiometry) of <i>cations and anions</i> . Since cations and anions can carry different amounts of charge, their ratio can differ from 1:1.								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Examples:		ements		ns with ed-shell	Formula	Name of salt		
Combination	Na	Br	Na⁺	Br	NaBr {Na ⁺ Br ⁻ }	sodium bromide		
Combination of ions in com-	ĸ	S	K+	S ²⁻	$K_2S = \{2K^+S^{2-}\}$	potassium sulfide		
pound so that	Ca	0	Ca ²⁺	O ²⁻	CaO {Ca ²⁺ O ²⁻ }	Calcium oxide		
charges are	Ba	CI	Ba ²⁺	Cŀ	BaCl ₂ {Ba ²⁺ 2Cl ⁻	Barium chloride		
compensated	AI	F	Al ³⁺	F	$AIF_{3} \{AI^{3+}3F^{-}\}$	Aluminum fluoride		
	AI	0	Al ³⁺	O ²⁻	Al ₂ O ₃ {2Al ³⁺ 3O ²	Aluminum oxide		

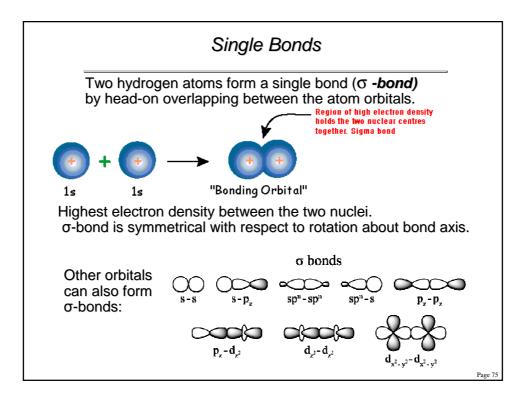


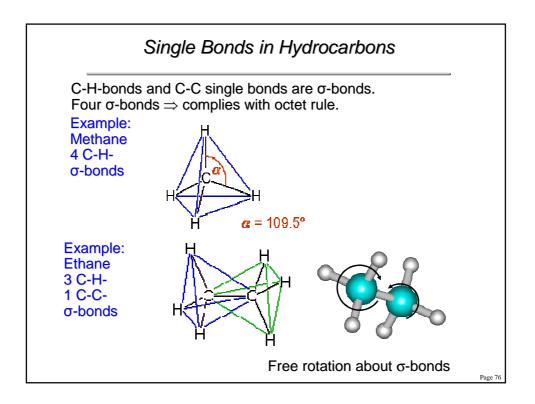


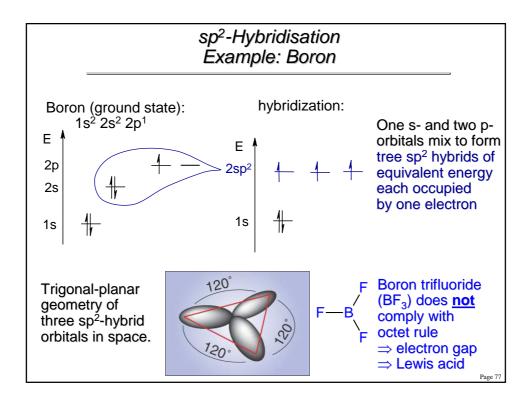


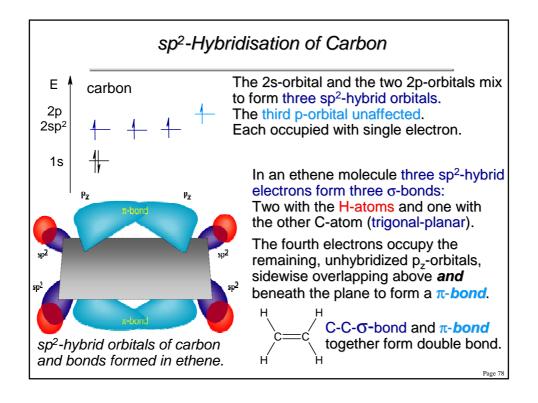

Stoichiometric Valency
The valency is a measure of the number of bonds formed by a given element. It depends on the number of valence electrons.
 H has always valence number 1 Alkali metals (I. MG.) have always valence number 1 Alkali earth metals (II. MG) always 2 Elements of III. MG have valency 3 Halogens (VII. MG: F, CI, Br, I) are always single valent O very often valency 2 Other elements different valency (MG. elements max. 4) Products of lower case indices and valency in binary compounds constant (last example)
Examples:H2O: 2-valent oxygen binds two single valent H NaCl: Both single valent \Rightarrow combine 1:1 MgCl2: 2-valent Mg binds 2 single valent Cl Al2O3: 2-Al (3-valent): 2-3 = 6; 3-O (2-valent): 3-2 = 6

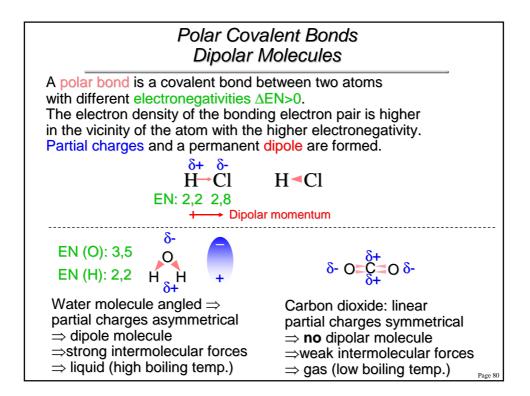


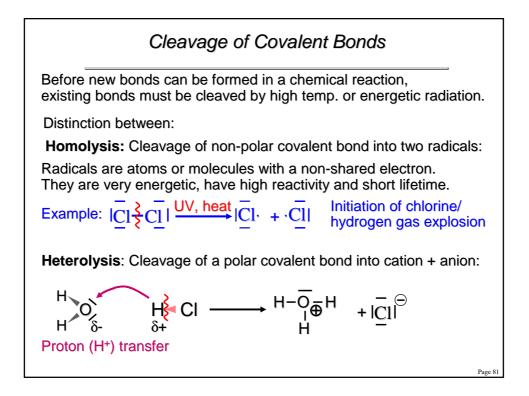


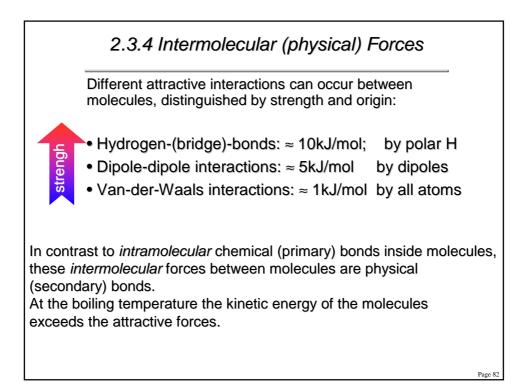


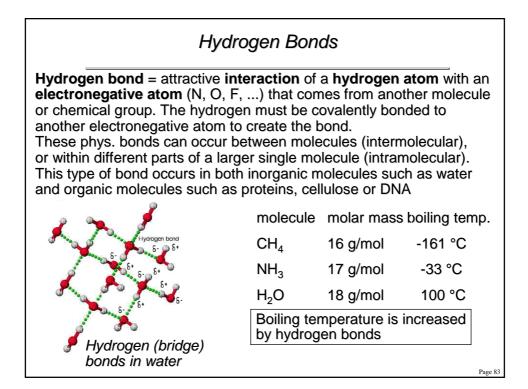


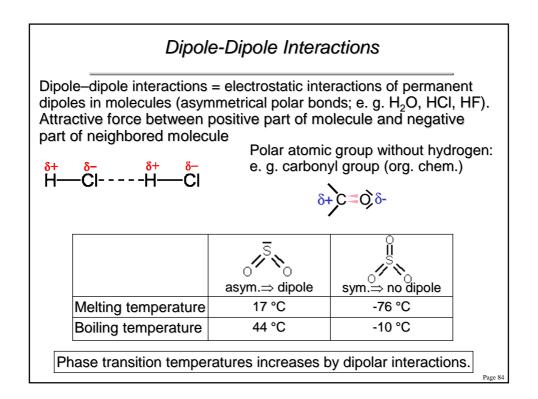


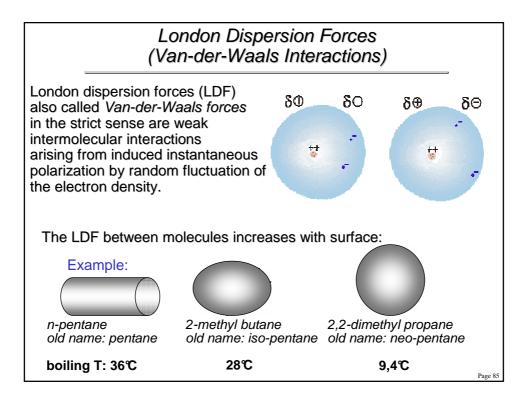


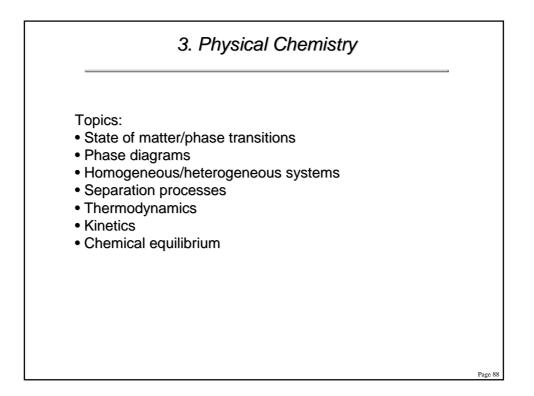


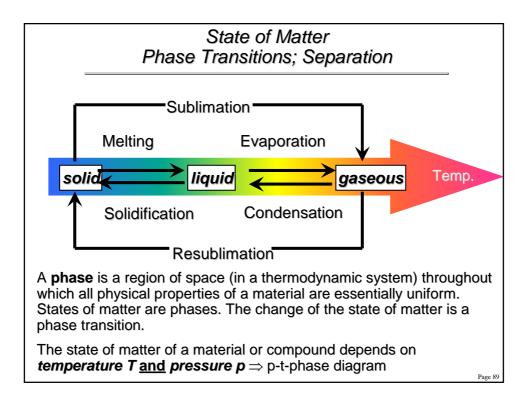


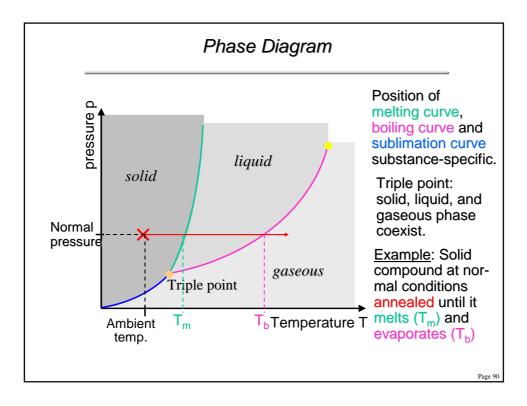


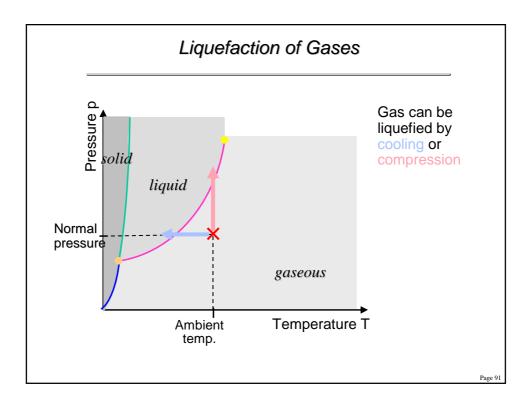


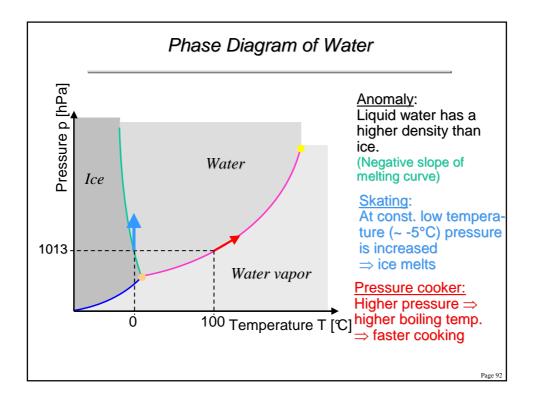








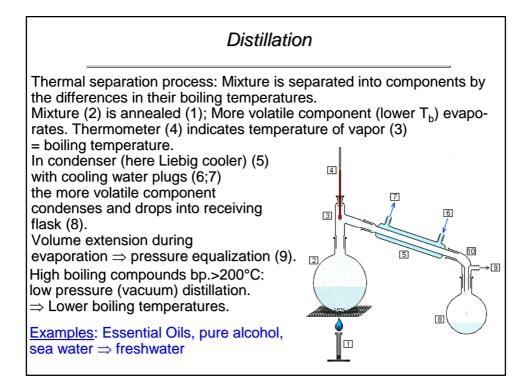

	Chemic	cal Bonds and Physical Summary	Bonds
	Bond type Energy (kJ/mol)	positive charge	negative charge
chemical	lonic bond Cations Lattice enthalpy ≈1000		anions
	metallic bond	Cations	delocalized electrons (electron sea)
	Covalent bond ≈ 300 per bond	Nucleus	Electron shell
	Hydrogen bond ≈ 20 kJ/mol	H atom (polar bond to electronegative atom, N, O,)	Electronegative atom with lone-pair (O, Cl)
physical	Dipole-dipole ≈ 5 kJ/mol	permanently positively polarized atom in mol.	permanently positive- ly polarized atom
p	Van-der-Waals- bond _≈ 1 kJ/mol	instantaneously positively polarized atom	instantaneously posi- tively polarized atom
		•	Page 86

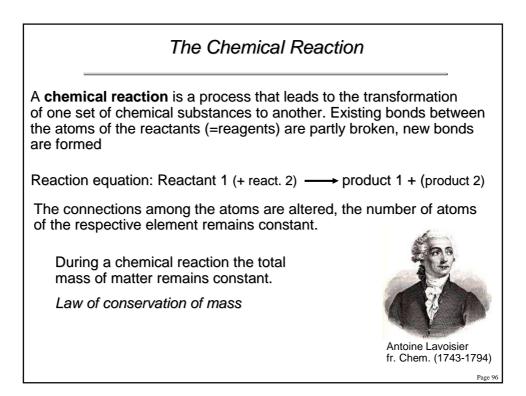

Polar/non-po hydrophilic	
Several types of chemical reactions solvent for the reactants can be four polarity of solvent and solute. The nu of polar bonds in the molecule influe	d. The solubility depends on umber, potency and arrangement
Benzene Ether Ester Alcohol Water	
Polarity	Polar solutes or atomic groups are water soluble = <i>hydrophilic</i>
Hydrophilicity	Fats are non-polar and not water soluble (hydrophobic) Non-polar compounds
Hydrophobicity = Lipophilicity	are <i>lipophilic.</i>
Ionic (Na ⁺ Cl ⁻) or polar compounds (m in water. Non-polar compounds (fat, o solvents (white spirit, ether, chlorofor	pil, grease) are soluble in non-polar
	Page 87

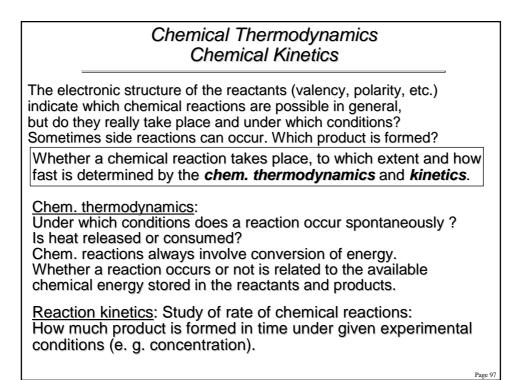
Multi Phase Systems heterogeneous Systems

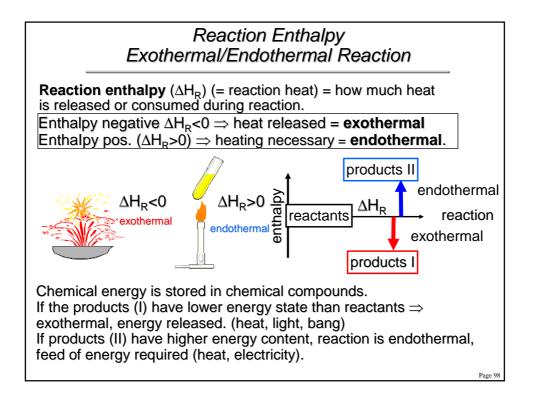
heterogeneous Systems: Two or more *components* (= phases). Physical (and chemical) properties change instantaneously at **phase boundaries**.

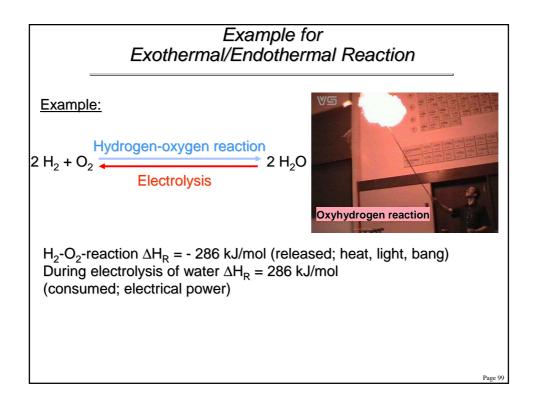
Differentiation by combination of states of matter (Example)

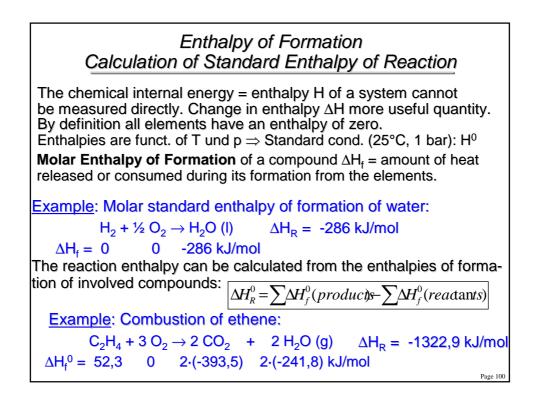

 (1) solid/solid (2) solid/liquid (3) liquid/liquid (4) solid/gaseous (5) liquid/gaseous 	Mixture Suspension Emulsion Smoke; foam Fog; foam	(Granite = feldspar + quartz+ mica) (Blood = blood cells in blood plasma) (Milk = fat droplets in water) (cigarette smoke, Styrofoam) (Fog, whipped cream)		
(o) inquia/gabooab	= Aerosols	(rog, whipped creatily		
Heterogeneous mixtures can of be separated into homogeneous				

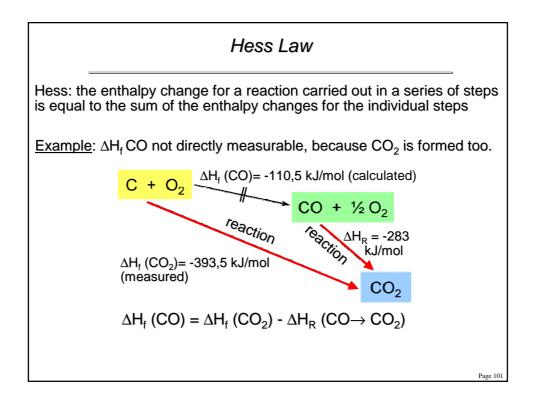

Heterogeneous mixtures can of be separated into homogeneous (uniform) components by physical operations like filtration, centrifugation, decantation, etc.

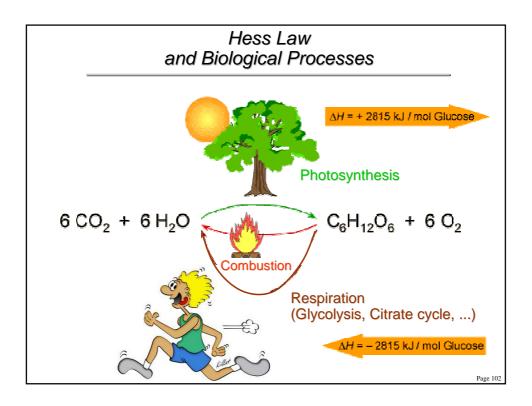

Page 93

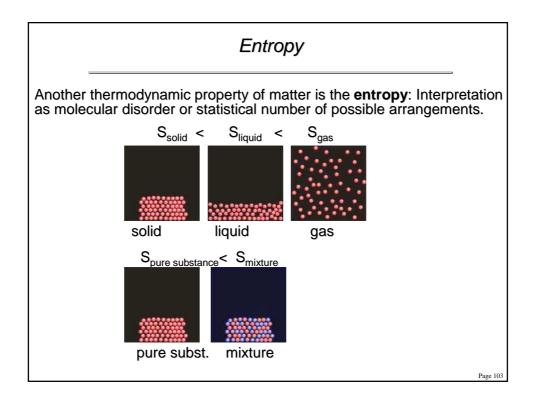

Homogeneous Systems					
In homogeneous systems the properties are uniform throughout the whole sample; no phase boundaries. Homogeneous systems can be pure substances or multi component systems (=solutions).					
Different types of solutions	:				
 (1) solid/solid (metal alloys, z. B. bronze) (2) solid/liquid (sugar dissolved in water) (3) liquid/liquid (alcohol + water) (4) solid/gaseous (solution of hydrogen in platinum) (5) liquid/gaseous (air dissolved in water) (6) gaseous/gaseous (air) 					
 Homogeneous mixtures can also be separated into their components by physical operations, e. g.: Distillation: Separation by different boiling points; (distilling) Extraction: Separation by different solubility's; (coffee cooking) 					

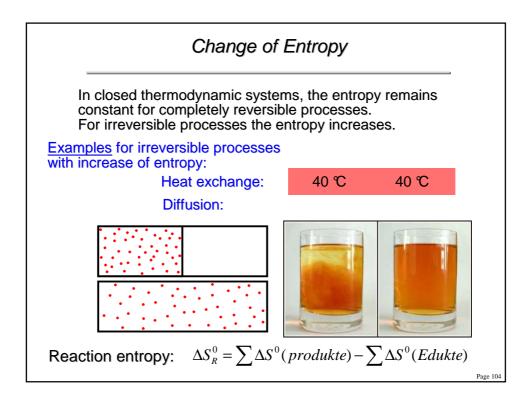

Page 94

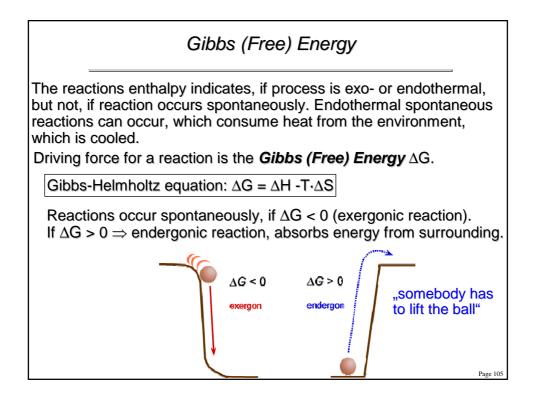


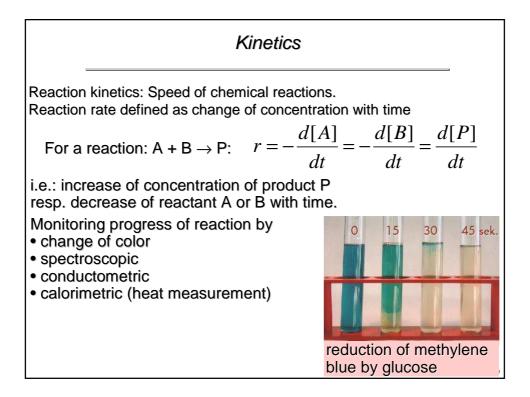


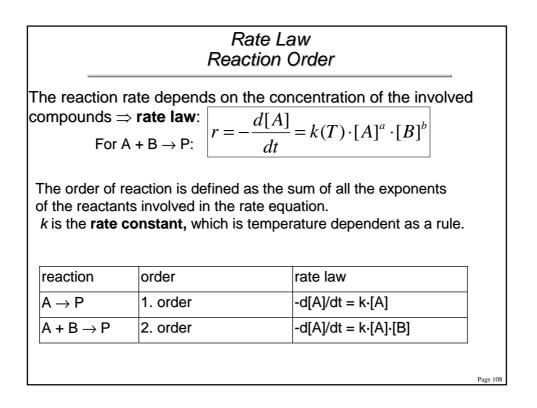


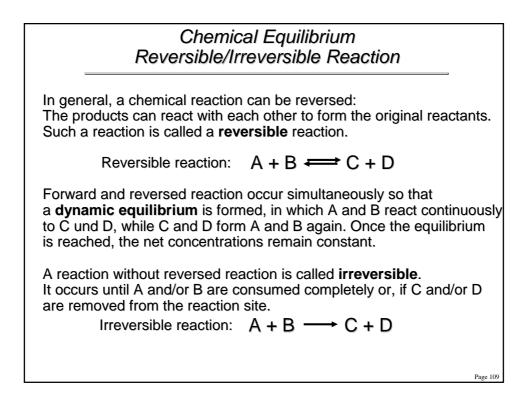


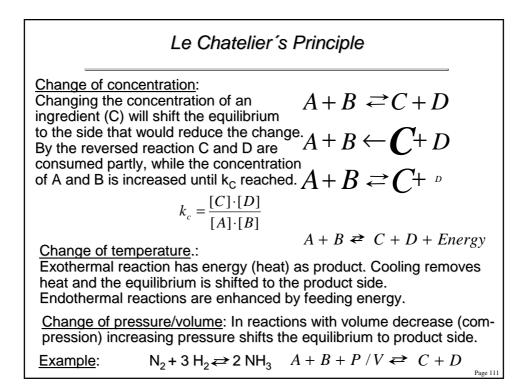


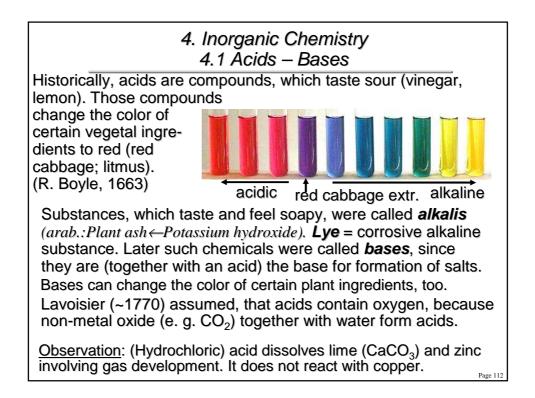


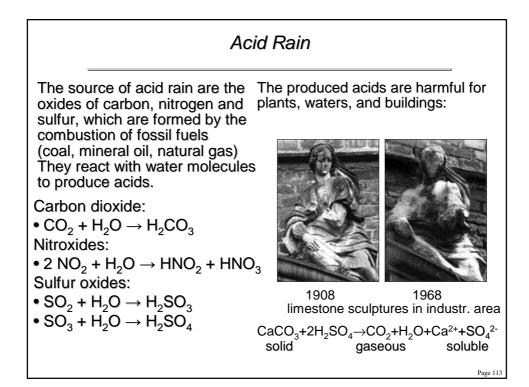


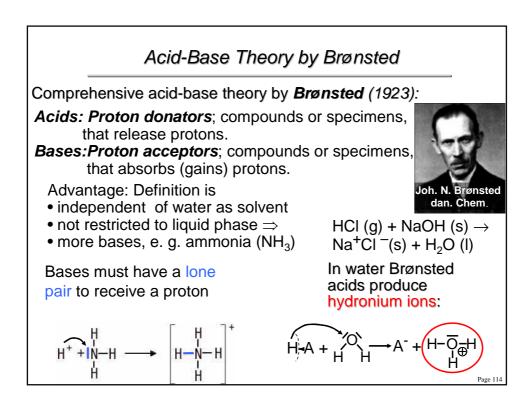


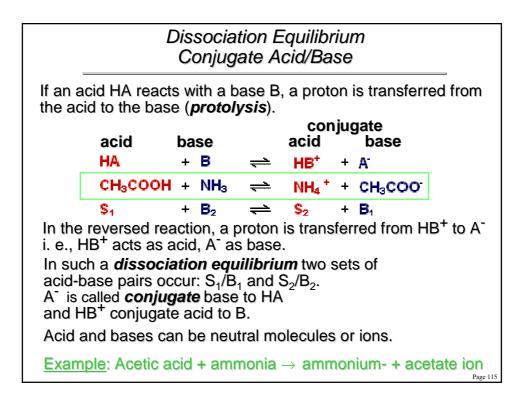


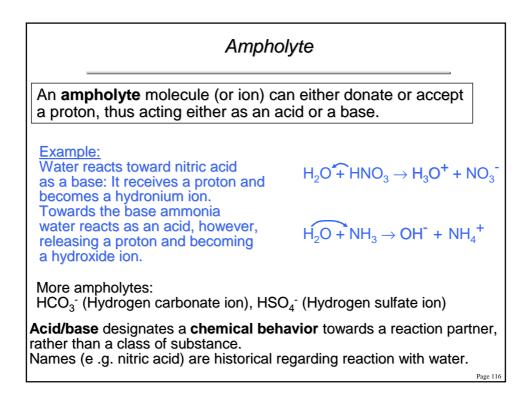


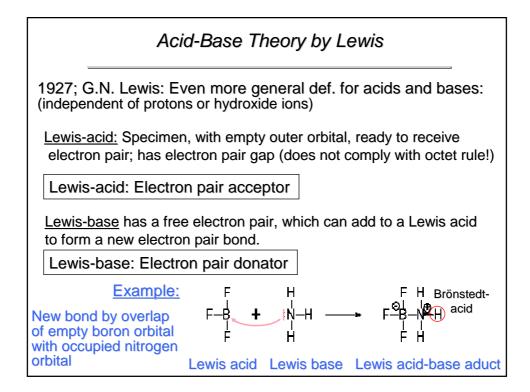


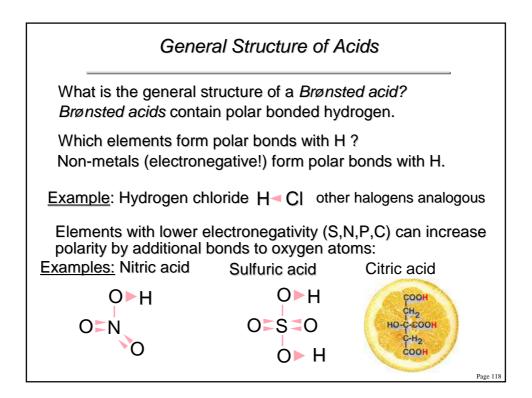


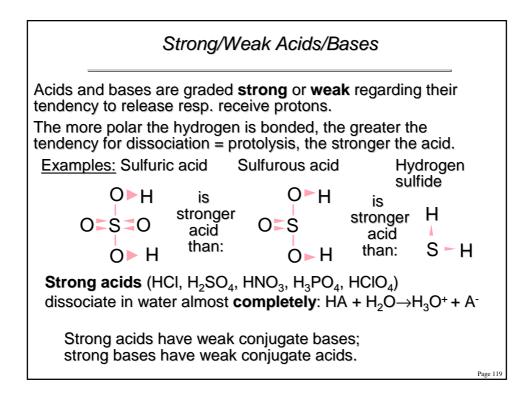


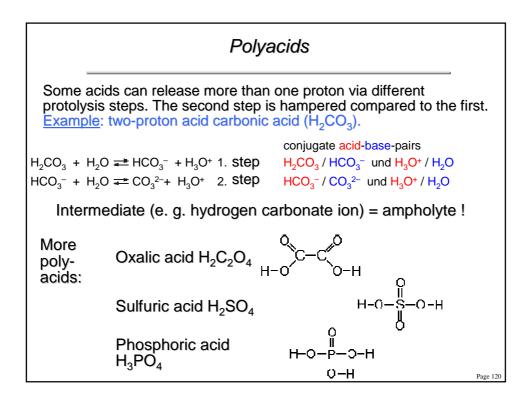

Law of Mass Action						
The equilibrium state of a chemical reaction can be described quantitatively by the Law of Mass Action (Guldberg/Waage 1865).						
$A + B \iff C + A$	D Equilibrium constant	$k_c = \frac{k_{\leftarrow}}{k_{\rightarrow}} = \frac{c(C) \cdot c(D)}{c(A) \cdot c(B)}$				
Concentrations are mu	Concentrations are multiplied! By convention product \Rightarrow numerator					
in general: $aA + bB$	$B \Leftrightarrow cC + dD$	$k_{c} = \frac{[C]^{c} \cdot [D]^{d}}{[A]^{a} \cdot [B]^{b}}$				
Almost complete reaction:	$A + B \rightleftharpoons C + D$	k _c >>1 ; z.B. 10¹²				
Equivalent equilibrium:	$A + B \rightleftharpoons C + D$	k _c =1				
Barely occurring reaction:	$A + B \rightleftharpoons C + D$	<i>k_c</i> <<1 ; z.B. 10 ^{−12}				
Application of Law of Mass Action:	 Solubility of salts Autoprotolysis of water 	ater Page 110				

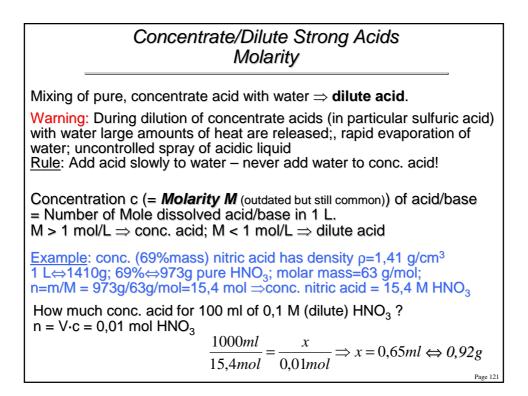


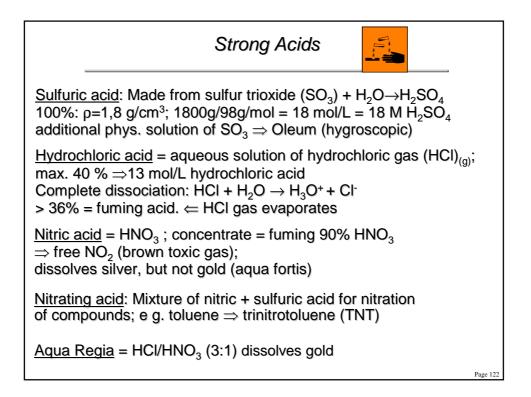


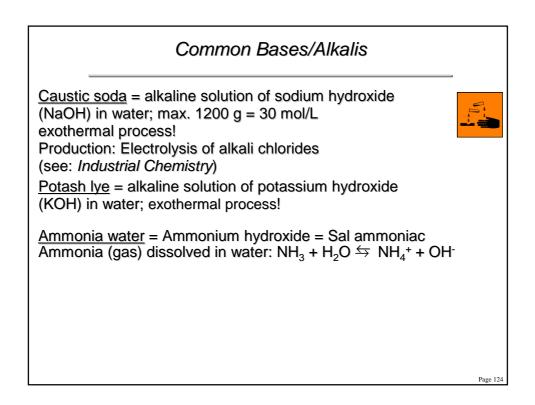


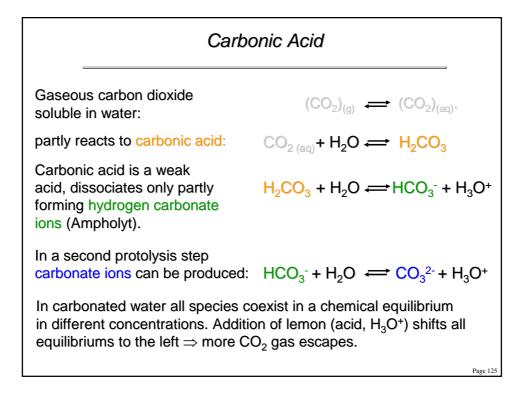


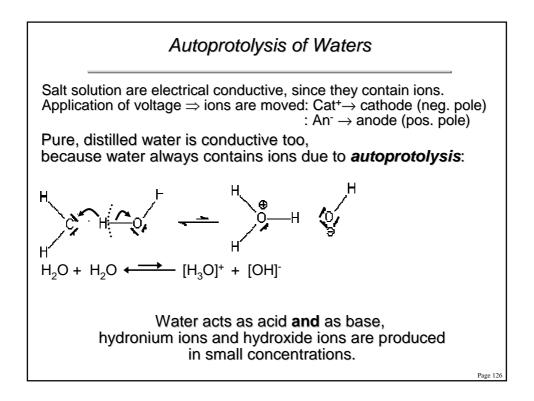


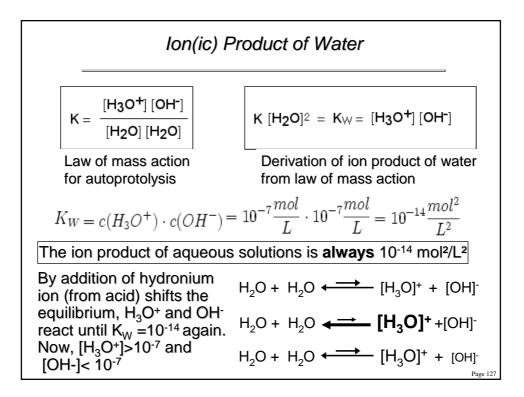




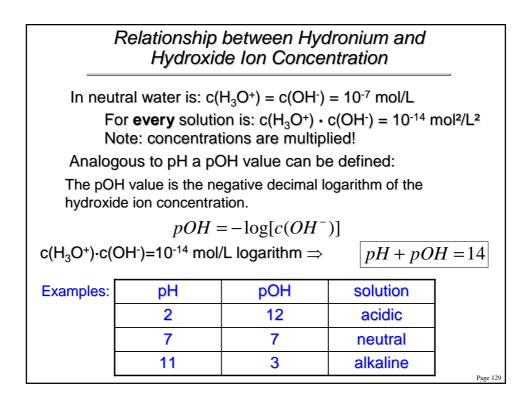


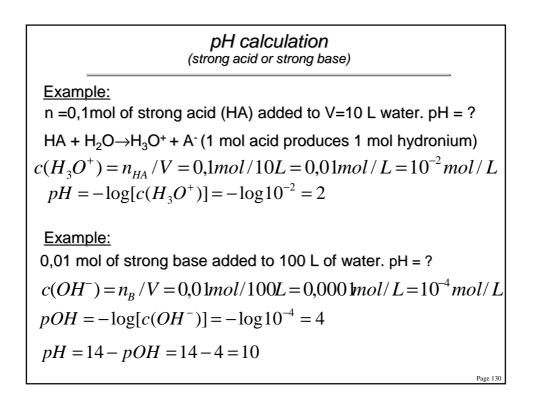


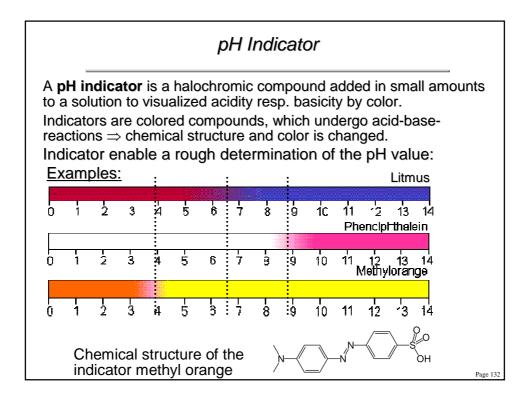


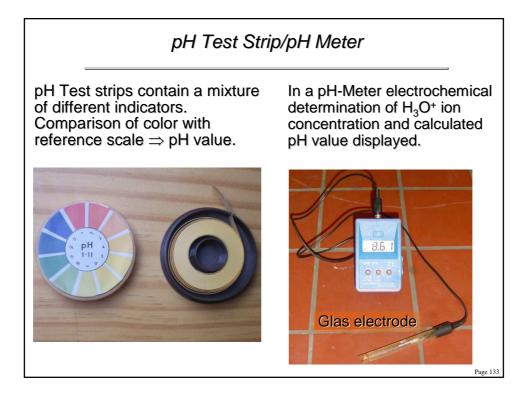


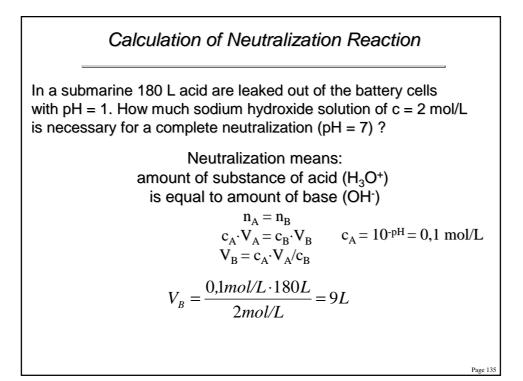
and their Conjugate Bases						
Hydrochloric acid	HCI _(aq)	Chloride ion	Cl-			
Hydrofluoric acid		Fluoride ion	F-			
Sulfuric acid	H ₂ SO ₄	Hydrogen sulfate	HSO ₄ -	Sulfate	SO ₄ ²	
Sulfurous acid	H ₂ SO ₃	Hydrogen sulfite	HSO ₃ -	Sulfite	SO ₃ ²	
Nitric acid	HNO ₃	Nitrate ion	NO ₃ -			
Nitrous acid	HNO ₂	Nitrite ion	NO ₂ -			
Phosphoric acid	H₃PO₄	Dihydrogen phosphate Hydrogen phosphate	H ₂ PO ₄ - HPO ₄ -	Phosphate	PO ₄ ³	
Carbonic acid	H ₂ CO ₃	Hydrogen carbonate	HCO ₃ -	Carbonate	CO_3^2	
Perchloric acid	HCIO ₄	Perchlorate ion	CIO ₄ -			
Hydrogen cyanide	HCN	Cyanide ion	CN ⁻			
Acetic acid	CH₃COOH	Acetate ion	CH₃COO ⁻			

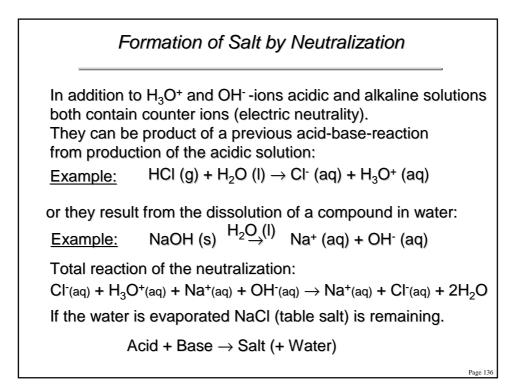


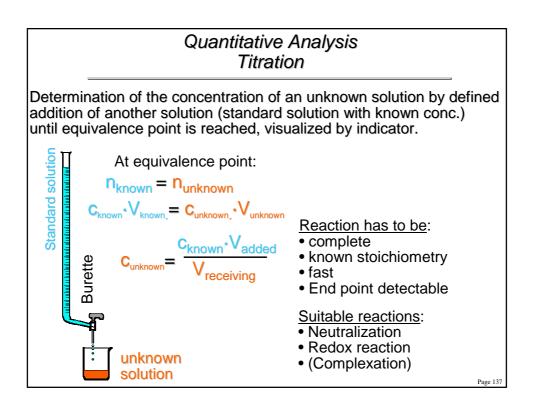


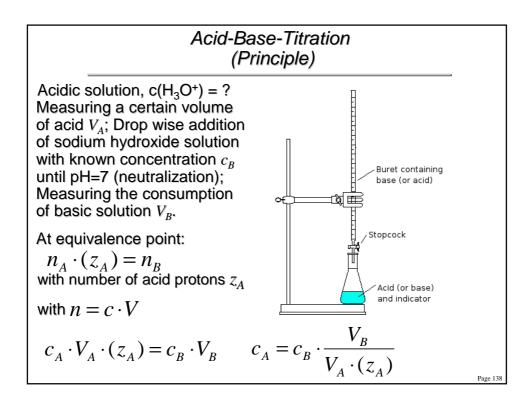


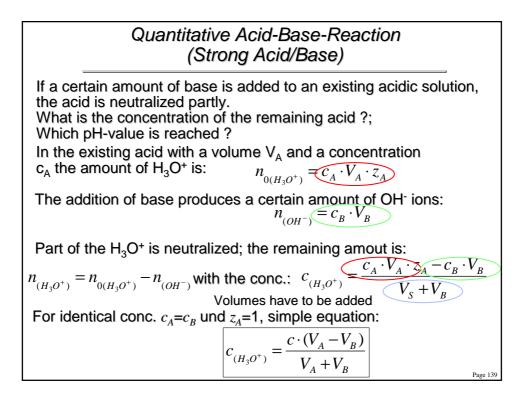

The pH Value							
The concentration of hydronium ions is a measure for acidic or alkaline character of a solution. Representation as decimal number confusing in powers of 10 inconvenient, therefore definition:							
The pH value is the negative decimal logarithm of the hydronium ion concentration. (potentia hydrogenii) $pH = -1g[c(H_3O^+)]$							
c(H ₃ O ⁺) mol/L decimal	c(H ₃ O ⁺) mol/L power	pH value	solution				
1	10 ⁰	0	very acidic				
0.0001	10-4	4	moderate acidic				
0.0000001	10 ⁻⁷	7	neutral				
0.000000001	10 ⁻¹⁰	10	moderate alkaline				

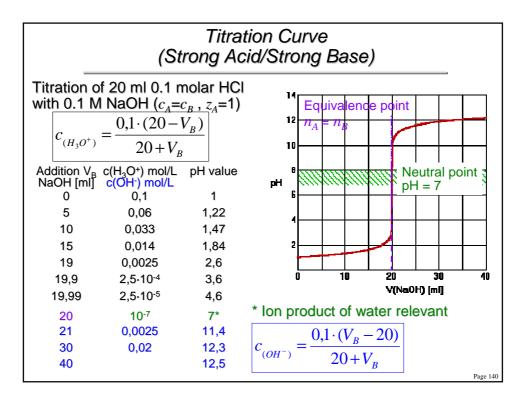


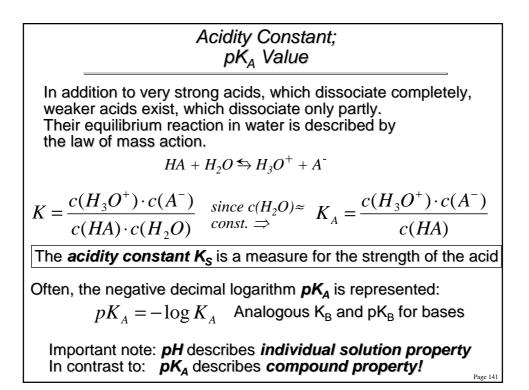

Substance	pH-Wert	Art	Substance	pH-Wert	Art
Battery acid	-0,5	Acidic	Saliva	6,5 – 7,4	Acidic to
Gastric acid	2,0				
Lemon juice	2,4		Blood	7,34 – 7,45	Alkaline
Coke	2-3		Sea water (today)	8,05	
	2,7		Sea water	8,16	
Vinegar	2,9		(pre-industrial)		
Orange/apple juice	3,5		Intestine	8,3	
Wine	4.0		Soap	9,0 - 10,0	
Sour milk	4,5		Sal ammoniac	11,5	
Beer	<mark>4,5 – 5,0</mark>		Bleaching agent	12,5	
Acid rain	<5,0		Concrete	12,6	
Coffee	5,0		Caustic Soda	-	
Тее	5,5			13,5	
Rain	5,6				1
Mineral water	6,0				
Milk	6,5				
Distilled water	7,0	Neutral			

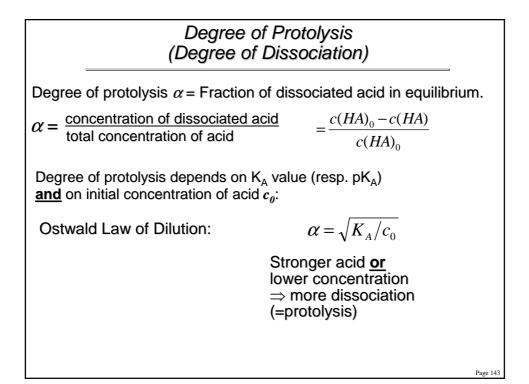




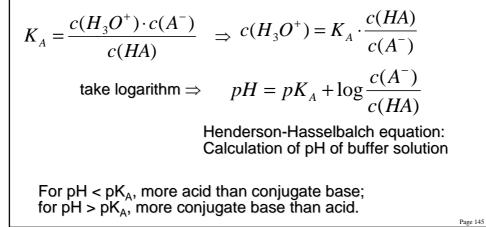

Neutralization				
Combination of an acidic solution with a certain with a certain $c(H_3O^+)$ with an identical volume of an alkaline solution with the same $c(OH^-)$ produces a neutral solution (pH=7). The underlying reaction is a <i>neutralization</i> .				
$H_3O^+ + OH^- \longrightarrow H_2O + H_2O$				
If identical amounts of substance (equimolar amounts) of H_3O^+ and OH^- are combined, they react in a neutralization reaction to neutral water.				
Attributes of a neutralization:				
 Attributes of a neutralization: represents an acid-base-reaction, proton transfer H₃O⁺ to OH⁻. exothermal reaction; reaction heat is released! used in quantitative analysis for determination of unknown c(H₃O⁺) or c(OH⁻): Acid-base titration (later) 				



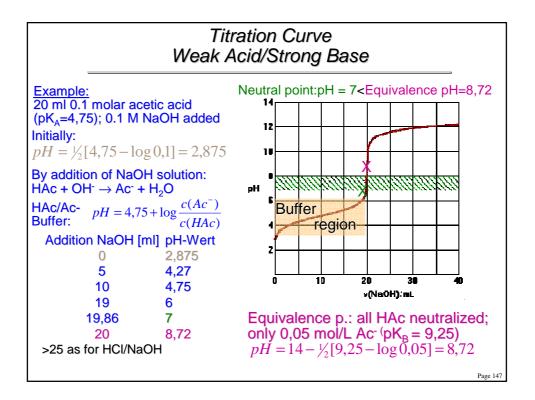


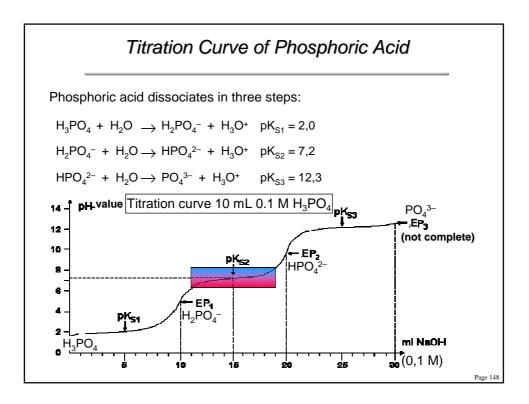


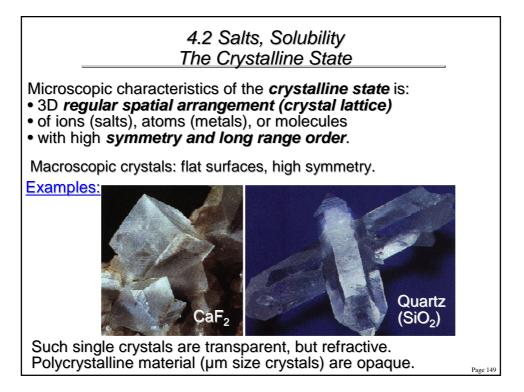
acid	Name	conjugated base	рК _А	acid	Name	conjugated base	рК _А
HCIO ₄	Perchloric acid	CIO ₄ -	-9	H₂S	Hydrogen sulfide	HS ⁻	7,06
HCI	Hydrochloric acid	Cŀ	-6	H₂PO₄ ⁻	Dihydrogenphosph.	HPO₄ ²⁻	7,21
H ₂ SO ₄	Sulfuric acid	HSO₄ ⁻	-3			-	
H ₃ O ⁺	Hydronium ion	H₂O	-1,74	HCIO	Hypochloric acid	CIO-	7,25
HNO ₃	Nitric acid	NO ₃ -	-1,32	NH ₄ +	Ammonium ion	NH ₃	9,21
HCIO ₃	Chloric acid	CIO3-	0	HCO ₃ -	Hydrogencarbonate	CO32-	10,4
HSO₄ ⁻	Hydrogen sulfate	SO42-	1,93	H ₂ O ₂	Hydrogen peroxide	HO ₂ -	11,6
H₃PO₄	Phosphoric acid	H₂PO₄⁻	1,96	HPO₄ ²⁻	Hydrogenphosphate	PO43-	12,3
HF	Hydrofluoric acid	F-	3,14	HS ⁻	Hydrogensulfid-	S ²⁻	12.9
CH₃COO	Acetic acid	CH₃COO-	4,75	H ₂ O	ion water	OH-	15,7
(H ₂ CO ₃)	Carbonic acid	HCO ₃ -	6,46	OH-	hydroxide-ion	O ²⁻	24

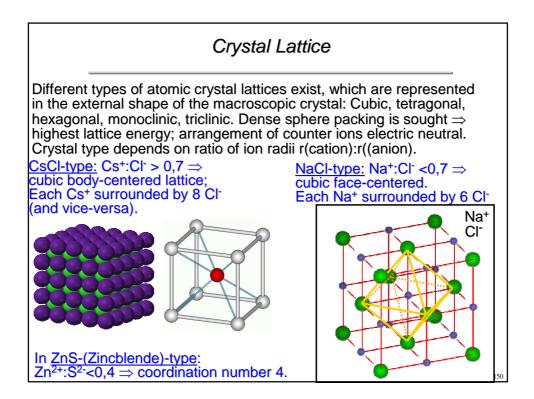


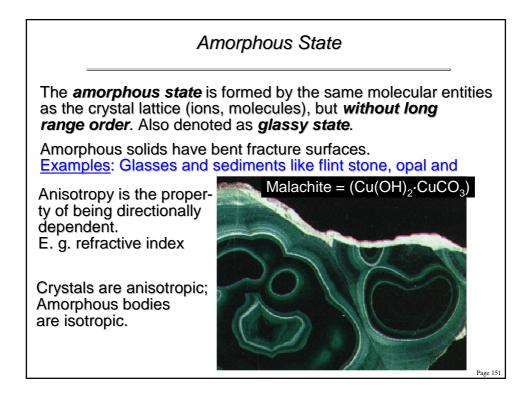
pH Calculation II (Weak Acid)				
$K_A = \frac{c(H_3O^+) \cdot c(A^-)}{c(HA)}$	since $c(H_3O)^+=c(A^-)$ and weak acid \Rightarrow little dissociation: $c(HA) \approx c(HA)_0$			
$K_A = \frac{c(H_3O^+)^2}{c(HA)_0} \Rightarrow$	$c(H_3O^+) = \sqrt{K_A \cdot c(HA)_0}$			
logarithm \Rightarrow pl	$H = \frac{1}{2} \left[pK_A - \log c(HA)_0 \right]$			
Example: 0,1 mol acetic acid (pK _A : $pH = \frac{1}{2}[4,75 - \log 0,1]$	= 4,75) in 1 L water: $[] = \frac{1}{2}(4,75+1) = 2,875$			
	Page 144			

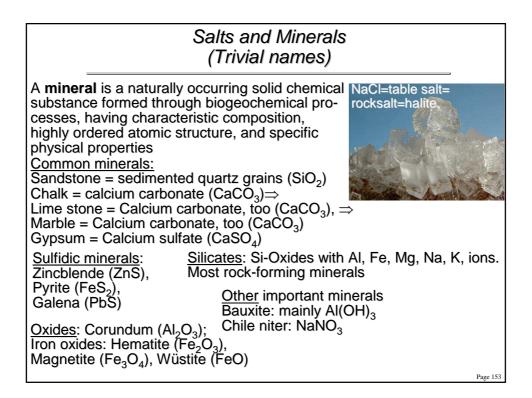

Buffer Solutions

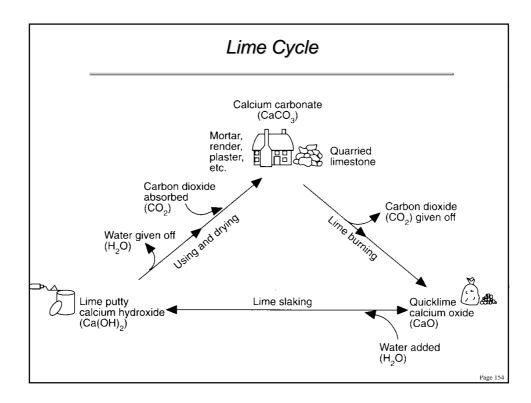

Buffer solutions contain a weak acid *and* its conjugate weak base together.

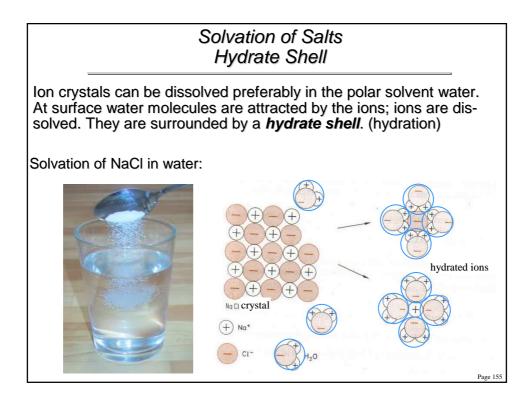

Buffers stabilize the pH value against external acid/base attack. Only minor changes of pH by addition of acid or base.

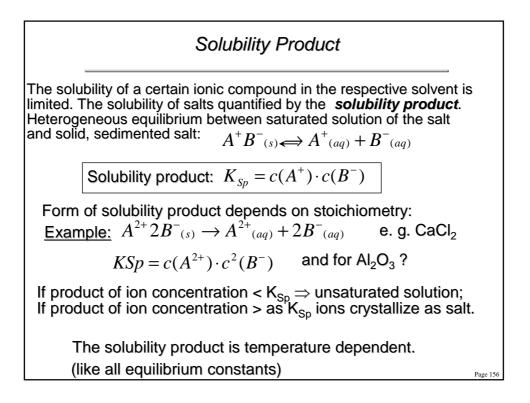




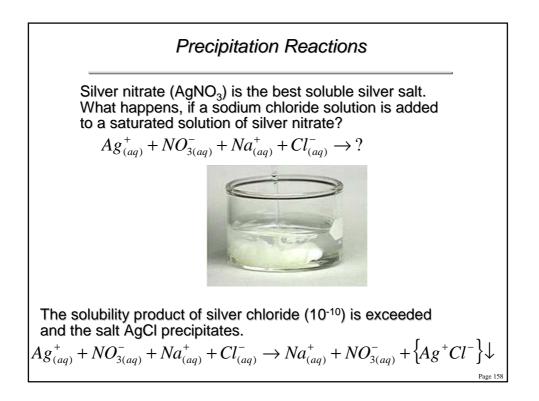


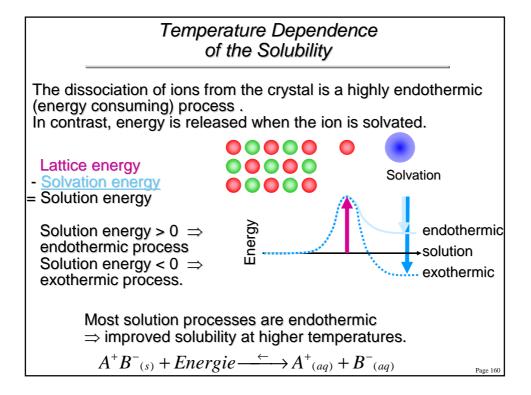






Salts
Salts are ionic solids, in which the cations (+) and anions (-) are arranged regularly in a 3D <i>crystal lattice</i> . Due to the strong electrostatic attractions between oppositely charged ions (lattice energy) salts have high melting points (NaCl 800°C). Salt crystals are electrically neutral, i. e. the charges of cations and anions are balanced = no net charge.
In salts of main group elements (I, II, VI, VII) the monoatomic ions comply with the octet rule \Rightarrow defined stoichiometry: (NaCl, MgCl ₂ , Na ₂ S) Salts of auxiliary group elements (transition metals) often have variable valancy: FeCl ₂ = {Fe ²⁺ 2Cl ⁻ } = iron(II)-chloride FeCl ₃ = {Fe ³⁺ 3Cl ⁻ } = iron(II)-chloride Cu ₂ O = {2Cu ⁺ O ²⁻ } = copper(I)-oxide CuO = {Cu ²⁺ O ²⁻ } = copper(I)-oxide Salts can also be composed of polyatomic ions: Ammonium- NH ₄ ⁺ , Carbonate- CO ₃ ²⁻ , Sulfate- SO ₄ ²⁻ , Phosphate- PO ₄ ³⁻ Dichromate- Cr ₂ O ₇ ²⁻ , Permanganate- MnO ₄ ⁻ . Composition of the salt with according to charge balance; e. g.: KMnO ₄ ={K ⁺ MnO ₄ ⁻ }, K ₂ Cr ₂ O ₇ ={2K ⁺ Cr ₂ O ₇ ²⁻ }; (NH ₄) ₂ CO ₃ ={2NH ₄ ⁺ CO ₃ ²⁻ } _{Pace 152}




Solubility Products Poor Solubility Salts Low solubility: K _{Sp} < 10 ⁻⁴ mol ² /L ²							
Compound	κ _{sp}	Compound	K _{Sp}	Hints:			
Halogenides		Sulfates					
AgCl	10 ⁻¹⁰ mol ² /l ²	CaSO ₄	2.10 ⁻⁵ mol ² /l ²	alkali metal salts			
AgBr	5·10 ⁻¹³ mol ² /l ²	BaSO ₄	1.10 ⁻⁹ mol ² /l ²	have good solubility			
Agl	8.10 ⁻¹⁷ mol ² /l ²	PbSO ₄	1.10 ⁻⁸ mol ² /l ²	alkali earth salts			
Carbonates		Sulfides		have lower solubility			
CaCO ₃	5.10 ⁻⁹ mol ² /l ²	HgS	10 ⁻⁵⁴ mol ² /l ²	Heavy metal salts			
BaCO ₃	2.10 ⁻⁹ mol ² /l ²	CuS	10 ⁻³⁶ mol ² /l ²	(Ag, Pb, Ba, Cd)			
Hydroxides		CdS	10 ⁻²⁸ mol ² /l ²	poorly soluble			
Mg(OH) ₂	10 ⁻¹¹ mol ³ /l ³	PbS	10 ⁻²⁸ mol ² /l ²	 Sulfides (S²⁻) are 			
AI(OH) ₃	10 ⁻³³ mol ⁴ /l ⁴	ZnS	10 ⁻²² mol ² /l ²	poorly soluble			
Fe(OH) ₂	10 ⁻¹⁵ mol ³ /l ³	NiS	10 ⁻²¹ mol ² /l ²				
Fe(OH) ₃	10 ⁻³⁸ mol ⁴ /l ⁴	MnS	10 ⁻¹⁵ mol ² /l ²				
Cr(OH) ₃	10 ⁻³⁰ mol ⁴ /l ⁴	Ag ₂ S	10 ⁻⁵⁰ mol ³ /l ³	Page 157			

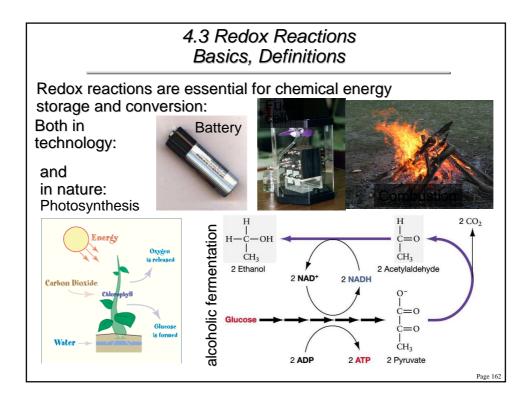
The Solubility

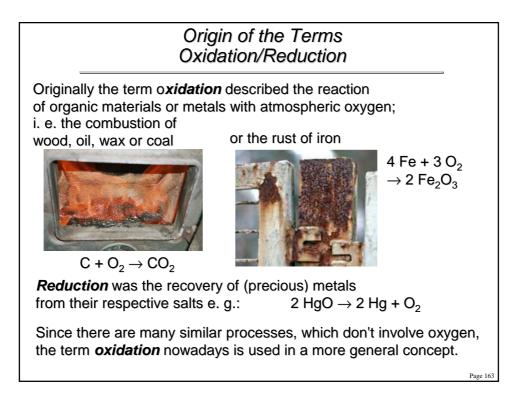
Due to the different unit dimension K_{S^p} values are hard to compare. Therefore, definition of the solubility S of a salt:

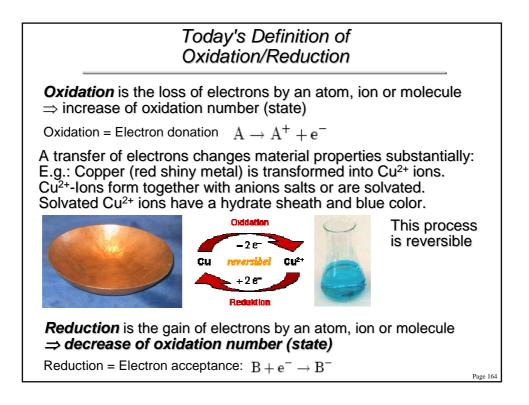
For $A^{+}B^{-}{}_{(s)} \rightarrow A^{+}{}_{(aq)} + B^{-}{}_{(aq)} \qquad S = c(A^{+}) = c(B^{-}) = \sqrt{K_{Sp}}$ <u>Example</u>: $K_{Sp} (AgCL) = 10^{-10} mol^{2}/L^{2} \qquad L_{AgCl} = \sqrt{10^{-10}} = 10^{-5} mol / L$ $c(Ag^{+}) = c(Cl^{-}) = c(AgCl) = 10^{-5} mol / L$ $m = M \cdot n = 143,5g / mol \cdot 10^{-5} mol = 1,435mg$ For the general case of a salt $A_{x}B_{y}$: $S = \frac{c(A^{y+})}{x} = \frac{c(B^{x-})}{y} = {}_{x+y} \sqrt{\frac{K_{Sp}}{x^{x} \cdot y^{y}}}$

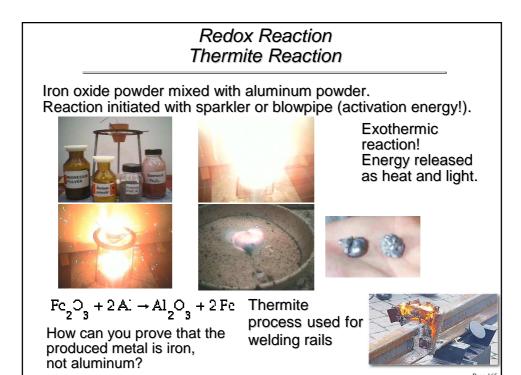
Common-Ion Effect

The common-ion effect is the decrease of the solubility of one salt, when another salt, which has an ion in common with it, is also present. For example, the solubility of silver chloride, AgCl, is lowered when sodium chloride, a source of the common ion chloride, is added.

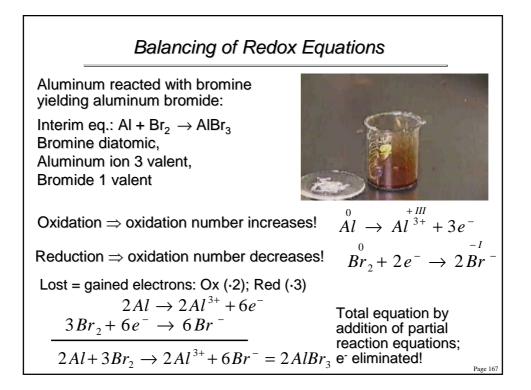

<u>Example</u>: An amount of NaCl-solution is added to a saturated AgCl-solution, so that $c(Cl^{-})=10^{-3} mol/L$. The solubility product of AgCl is exceeded; AgCl has to precipitate until: $K_{Sp} = c(Ag^{+}) \cdot c(Cl^{-}) = 10^{-10} mol/L$

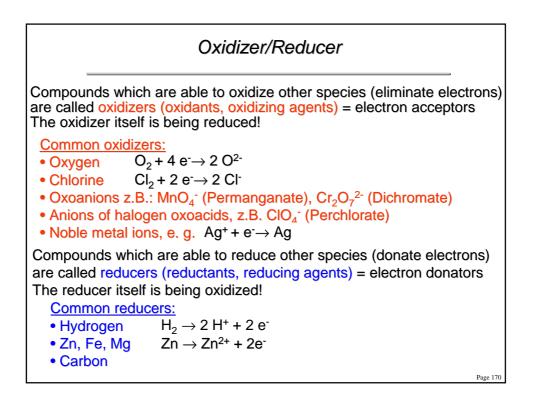

The solubility product remains constant!

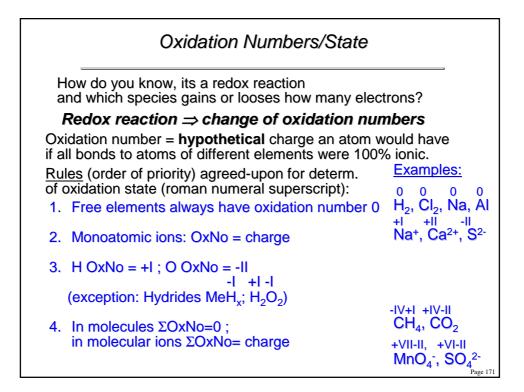

The concentration of silver ions $c(Ag^+) \neq c(Cl^-)$ is then:

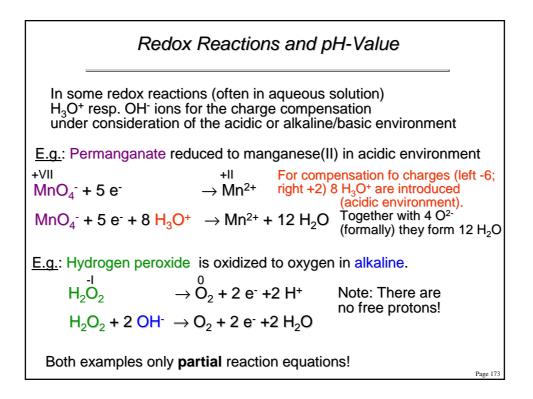

$$c(Ag^+) = \frac{K_{Sp}}{c(Cl^-)} = \frac{10^{-10}}{10^{-3}} = 10^{-7} mol/L$$

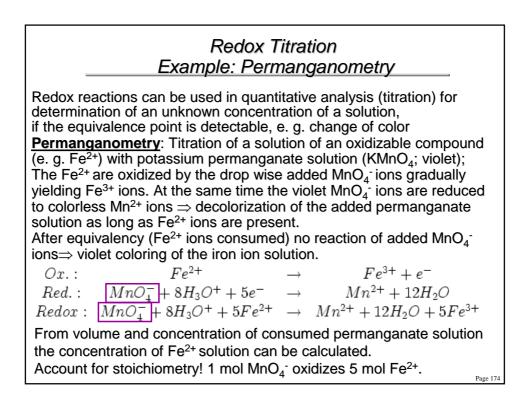
Page 161

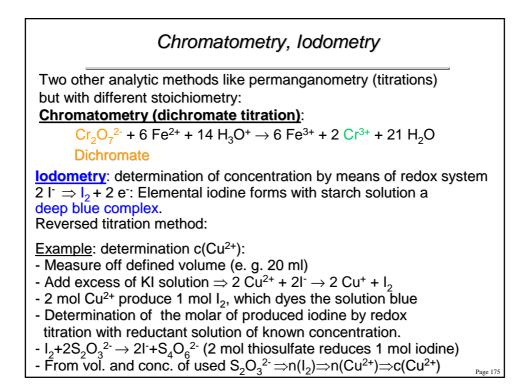


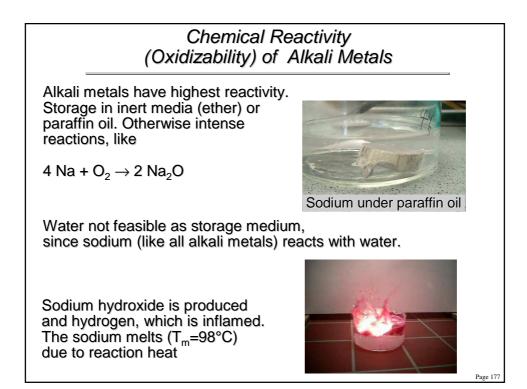


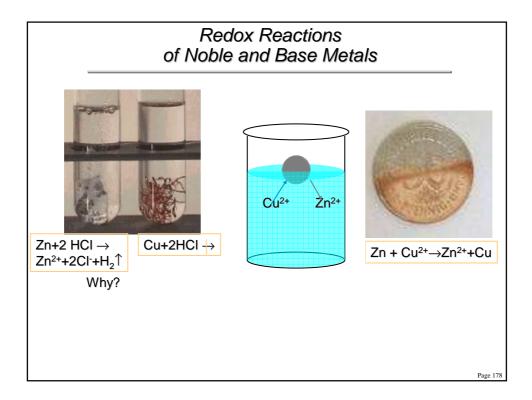

Redox Reactions Examples							
No free electrons exist! Oxidation and reduction coexistent! Redox reaction = Electron transfer: $A + B \rightarrow A^+ + B^-$							
Depending on the reactants several electrons can be transferred							
In redox reactions the gain of electrons in the reduction must be identical to the loss of electrons in the oxidation. Electrons never show up in the total equation!							
Example: Zinc + sulfur: Oxidation: $Zn \rightarrow Zn^{2+} + 2e^{-1}$ Reduction: $S + 2 \xrightarrow{e^{-}} S^{2-1}$ Redox reaction: $\overline{Zn + S} \rightarrow \overline{Zn^{2+} + S^{2-}} = ZnS$							
A redox reaction can formally be subdivided into oxidation and reduction. The two parts reaction never occur separately!							
Conservation of mass and charge: On both sides of reaction arror same number of the atoms of each element and same total charge.							
Note: Do not subtract electrons $Zn - 2e \rightarrow Zn^{2+}$							
No half molecules : 1/2 81/2 Page 10							

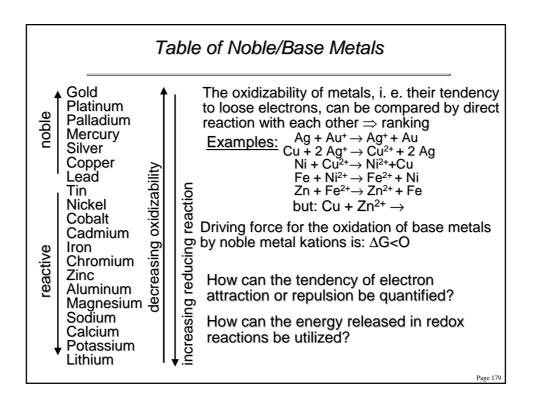

More Redox Reactions							
Reduction of iron-(II)-oxide to iron: Redox : 2 FeO + C \rightarrow CO ₂ + 2 Fe Oxidation : C + 2 O ²⁻ \rightarrow CO ₂ + 4 e ⁻ Reduction: 2 Fe ²⁺ + 4 e ⁻ \rightarrow 2 Fe							
Redox reaction without oxygen:Redox:2 Na + $Cl_2 \rightarrow 2$ NaClOxidation:2·(Na \rightarrow Na ⁺ + e ⁻)Reduction: $Cl_2 + 2 e^- \rightarrow 2 Cl^-$	Na (I. mg) looses 1 e ⁻ , Cl (VII. mg) gains 1 e ⁻ , to obey octet rule. Chlorine diatomic gas.						
$\begin{array}{l} \mbox{Redox reaction with complex stoichiometry:} \\ \mbox{Redox:} & 16\mbox{ Al} + 3\mbox{ S}_8 {\rightarrow} 8\mbox{ Al}_2 \mbox{S}_3 {=} \{2\mbox{Al}^{3+} 3\mbox{S}^{2-}\} \\ \mbox{Oxidation:} & 16 {\cdot} (\mbox{Al} \rightarrow \mbox{Al}^{3+} + 3\mbox{ e}^{-}) \\ \mbox{Reduction:} & 3 {\cdot} (\mbox{S}_8 {+} 16\mbox{ e}^{-} {\rightarrow} 8\mbox{S}^{2-}) \end{array}$	AI (III. mg) looses 3 e ⁻ , S (VI. mg) gains 2 e ⁻ , to obey octet rule. sulfur as S ₈ ring.						
The stoichiometric factors result from combined of the partial reaction steps.		ige 168					

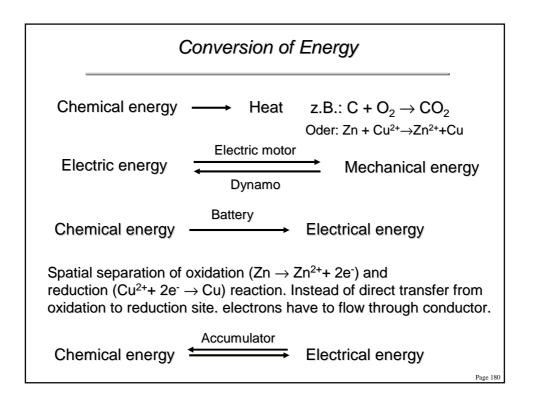


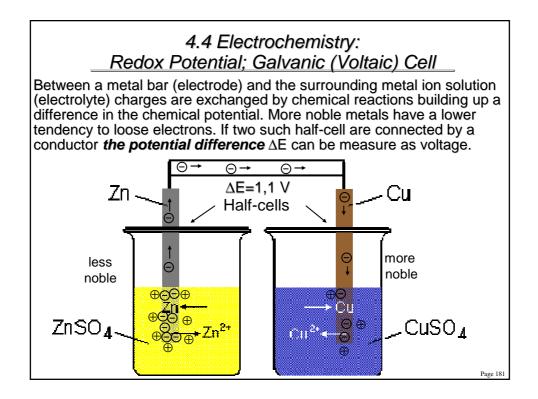


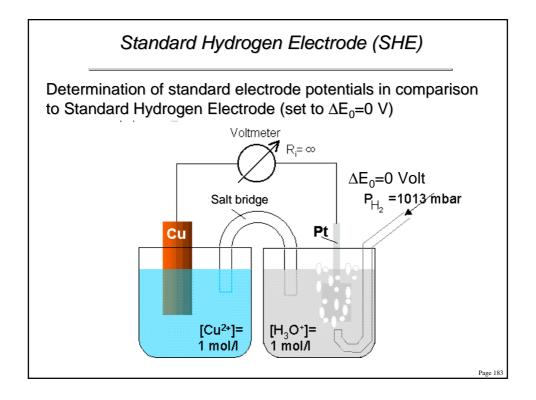

Oxidation Numbers of Selected Compounds										
Compounds of chlorine with various oxidation numbers:										
OxNo				+l		+IV			+VII	
Formula	Cl	Cl ₂		CIO ⁻ HCIO		CIO ₂ CIO HC		\dot{D}_3	CIO4 ⁻ HCIO4	
Name	Chloride	Chlori ne		ochlorite ochloric acid		loro- xide		rate ric acid	Perchlorat Perchloric	
Compo	unds of	sulfu	r with	n various ox	kida	tion nur	nber	S:		
OxNo	OxNo -II 0		0	+111		+IV		+VI		
Formula	S ²⁻ /H ₂ S S ₈		S ₈	S ₂ O ₄ ²⁻		SO ₂ /SO ₃ ²⁻ / H ₂ SO ₃		SO₃/SO₄²⁻/ H₂SO₄		
Name	Sulfide/Hydro Sulfur [gen sulfide			ur Dithionit	е	Sulfur o sulfurou	lioxide	e S.trio	oxide/Sulfate uric acid	1
Compounds and oxidation numbers of manganese:										
OxNo	lo +II			+IV		+VI		+VII		
Formula	Mn ²⁺			MnO ₂		MnO₄²-		MnO₄⁻		
Name	Manganese (II) ion		Э			Manganate (blue)		Permanganate (violet)		Page 172
Compounds and oxidation numbers of OxNo +II +IV +V Formula Mn ²⁺ MnO ₂ Mr Name Manganese Manganese Ma					+V Mn Ma	mangar I O ₄ ²⁻ nganate	nese:	+VII MnO₄ Perma	anganate	Page

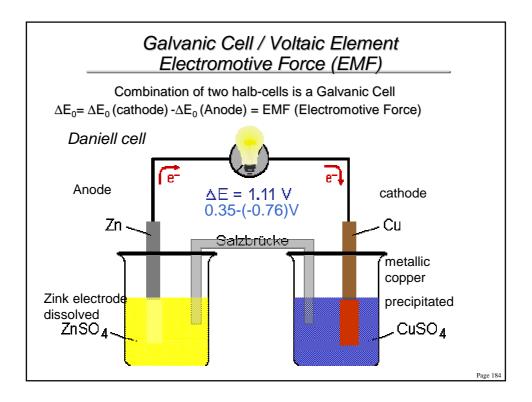


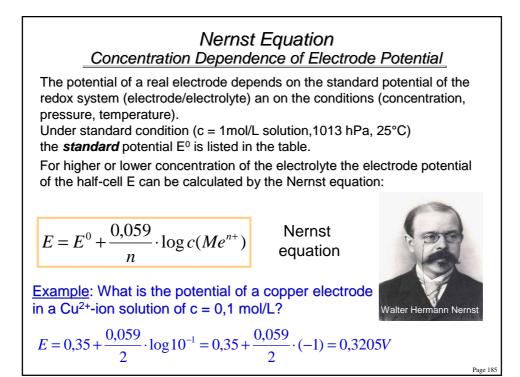


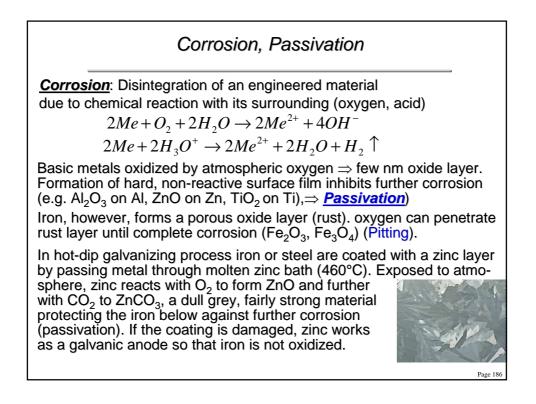


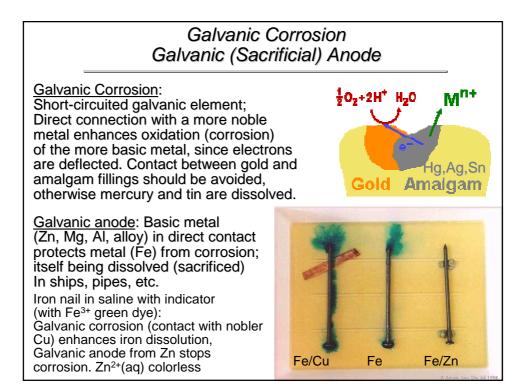

Noble/Base Metals									
Why does iron rust, but gold does not? Does aluminum oxidize? What is the difference between noble and base metals?									
In general all metals can react by loosing electrons, forming metal kations, i. e. they oxidize. But:									
The various metals have a different oxidizability: <u>Noble metals</u> : resistant to oxidation, low reactivity, occur in elemental form. Gold, platinum, silver, (copper)									
Base metals: readily oxidizable, reactive, occur in compounds all main-group metals: (Alkali, alkaline earth metals, aluminum)									
Transition metals: Li Be Iron, Zinc, etc. Na Mg									
	Rb Sr Y Zr Nb Mo Tc <mark>Ru Rh Pd Ag</mark> C	d In							
	<mark>Cs Ba</mark> La * Hf Ta W <mark>Re Os Ir Pt Au H</mark>								










Table of Standard Electrode Potenials									
Strength oxidizing/reducing agents		Ox.	n,	Red.	 ΔΕ ₀				
depends on change of Gibbs free energy ΔG during electron loss or gain:	Fluor (F)	F ₂	+ 2e ⁻	↔ 2F ⁻	+2,87 V				
Each redox system (electrode/	Gold (Au)	 Au⁺	+ e [.]	↔ Au	+1,69 V				
electrolyte \Rightarrow redox potential;	Platinum (Pt)	Pt ²⁺	+ 2e [.]	↔ Pt	+1,20 V				
listed in Table of Standard Electrode	Chlorine (Cl)	Cl ₂	+ 2e [.]	↔ 2Cl [.]	+1,31 V	inc			
Potential >	oxygen (O ₂)	0 ₂ +4H⁺	+ 4e ⁻	⇔2 H ₂ O	+0,85 V	re			
Isolated potential (half-cell)= not \overrightarrow{b}	Silver (Ag)	Ag+	+ e [.]	↔ Ag	+0,80 V	increasing			
obtained emp. \Rightarrow only galvanic cell	Sulfur (S)	S	+ 2e [.]	↔ S ²⁻	+0,48 V	ng			
potial between pairs of electrodes $\Lambda F \subseteq I$	Copper (Cu)	Cu ²⁺	+ 2e ⁻	↔ Cu	+0,35 V	ē			
potial between pairs of electrodes ΔE . E_0 Hydrogen Electrode defined 0 Stronger oxidizers (Ox) \Rightarrow positive potential ΔE_0	hydrogen (H ₂)	2H+		$\leftrightarrow H_2$	0	reducing			
Stronger oxidizers (Ox)	Lead (Pb)	Pb ²⁺	+ 2e ⁻	↔ Pb	-0,13 V	Sin			
\Rightarrow positive potential ΔE_0	Tin (Sn)	Sn ²⁺	+ 2e ⁻	↔ Sn	-0,14 V				
Stronger reduction agents (Red)	Nickel (Ni)	Ni ²⁺	+ 2e*	↔ Ni	-0,23 V	äct			
\Rightarrow negative potential ΔE_0	Cadmium (Cd)	Cd ²⁺ Fe ²⁺	+ 2e ⁻ + 2e ⁻	↔ Cd ↔ Fe	-0,40 V	activity			
Stronger reduction agents (Red) $\stackrel{\frown}{=}$ \Rightarrow negative potential ΔE_0 Stand.cond.(25°C,1013 hPa,1 mol/L).	Iron (Fe)	⊢e ²⁺ Zn ²⁺	+ 2e ⁻	⇔ Fe ⇔ Zn	-0,41 V -0,76 V	~			
	Zinc (Zn) Aluminum (Al)	Zn="	+ 2e + 3e ⁻	⇔ Zn ⇔ Al	-0,76 V				
$\Delta_R G_0 = -n_e \cdot F \cdot \Delta E_0 \text{Faraday-Konst. F} \boldsymbol{\subseteq}$	Magnesium (Mg)	Mg ²⁺	+ 3e ⁻ + 2e ⁻	↔ Ai ↔ Mq	-1,66 V -1,66 V				
Base metals oxidized by acid $(H^+ \Rightarrow H_2)$	Sodium (AI)	Na⁺	+ 1e ⁻	↔ Na	-2,71 V				
noble metals and copper are not.	Lithium (Li)	Li ⁺	+ 1e ⁻		-3,02 V	ıge 182			

