NMR-Spektroskopie an Polymeren

Christoph Wutz

Inhaltsverzeichnis			
1 Einleitung	4 Zweidimensionale HR-NMR		
1.1 Literatur	4.1 Grundlagen		
1.2 Warum NMR?	4.2 J-aufgelöstes Spektrum		
1.3 Historische Entwicklung	4.3 Korrelierte Spektren		
2 Grundlagen	5 HR-NMR an Polymeren		
2.1 Kernspin, Magnetisches Moment	5.1 Stereoregularität		
2.2 Radiofrequenzfeld, Resonanzbedingung	5.2 Sequenzanalyse		
2.3 RF-Impulse, Gradientpuls, Relaxation	5.3 Deuterierungsgrad		
2.4 FID, FT, Frequenzspektrum	5.4 Endgruppenanalyse		
2.5 Spektrale Parameter	6 Festkörper-NMR		
2.6 Spin-Kopplung	6.1 Grundlagen		
2.7 Kern-Overhauser-Effekt	6.2 Exp. Methoden		
3 Hochauflösungs-NMR	6.3 ¹³ C-NMR an Polymeren		
3.1 Grundlagen	6.4 ² H-NMR an Polymeren		
 3.2 Signalintensitäten 3.3 Chemische Verschiebung 3.4 Doppelresonanz-Experimente 3.5 Spezielle 1D-Experimente 	(7 Imaging)		

		1.1 Literate	ur
icht	<u>Hesse/Maier/Zeeh</u> Hoffmann/Kröner/ Kuhn: <u>Friebolin:</u> Spektroskopie	Spektroskop. Methoden in der OC Polymeranalytik I, Kap. 5.32 Band II, Kap. 10.32 Ein- und zweidimensionale NMR-	Neben IR, UV, MS Einführung in NMR Einf. NMR an Polymer, Taktizität Einf. Festkörper-NMR anschaulich, vollständig, kleiner Polymerteil
e	Breitmeier/Bauer: Matsuzaki/Uryu/ Asakura: Brandolini/Hills	¹³ C-NMR-Spektroskopie NMR Spectr. And Stereoregularity of Polymers NMR Spectra of Polymers and Add.	skriptartig, viele Beisp. gängige Polymer und ihre typischen NMR- Fragestellungen Spektrensammlung
schwer	Slichter: Principles of Magnetic ResonanceFarrar/Becker:Pulse- and FT-NMRMcBrierty/Packer: Nuclear Magnetic Resonance in Solid PolymersSchmidt-Rohr/Multidimensional Solid-State NMRSpiess:and Polymers		Mathematisch exakt Gerätebeschr.,Relaxation, FT
			2D,3D, Exchange,Festkörper-NMR, Simulation, sehr gut, aber anspruchsvoll

NMR im Internet		
<u>Tutorium:</u>	Joseph P. Hornak, University of Florida, Gainesville, USA, <u>www.cis.rit.edu/htbooks/nmr/</u>	
	Françoise Sauriol, Queens University, Kanada www.chem.queensu.ca/FACILITIES/NMR/nmr/webcourse/	
	Deutscher NMR-Server, Prof. Kessler, TU-München www.nmr.de	
<u>Datenbanke</u>	en:	
Suche nach \ (sehr gute Eir	/erbinbungen: <u>www.aist.go.jp/RIODB/SDBS/menu-e.html</u> ngabemaske: Name, CAS-No., Mw, Peak-Positionen	
Für Polymere	: <u>polymer.nims.go.jp/NMR/top_eng.html</u> mit Anmeldung \Rightarrow user-ID + password	

1.2 Warum NMR?
<u>Nachteile:</u> ● Hohe Gerätekosten (€ 0.3-5 Mio.) ● Know-How nötig; lange Einarbeitung
 <u>Vorteile und Möglichkeiten:</u> Standardmethode zur Identifizierung chemischer Strukruren Vorteil: Zerstörungsfrei, geringe Probenmenge (mg), kurze Meßzeit Kern ⇔ elektr. Umgebung ⇒ Info über molekulare Umgebung Ziele der Hochauflösungs-(HR) NMR: Konstitutionsanalyse (Identifikation der Verbindung) Molekulare Parameter: Atomabstände, Sequenzanalyse; Reaktionsmechanismen Ziele der Festkörper-NMR: Struktur nichtlöslicher Verbindungen, Struktur + Beweglichkeit im Festkörper Ziele der mehrdimensionalen NMR Zuordnung molekularer Parameter zu bestimmten Atomgruppen Signaltrennung Untersuchung dynamischer Prozesse

	1.3 Historische Entwicklung		
1946	Bloch, Hansen, Packard unabhängig voneinander		
	Purcell, Torrey, Pound Nachweis Kernresonanzsignale		
1952	Nobelpreis für Bloch, Purcell		
50-60iger	Entwicklung Standardmeßmethode verschiedene Kerne		
	Messzeitverkürzung durch Impulstechnik		
	Hochauflösende Festkörper-NMR durch MAS		
	Mehr Informationen durch neue Pulsfolgen (bis heute)		
70iger	Entwicklung 2D-NMR		
1991	Nobelpreis für R. Ernst (nachträglich)		
Bis heute	Stärkere Magnete (900 MHz), aufwendige Pulsfolgen		

			Wichtig	e NMR-ak	tive Kerne	
	Kern	I	nat. Pop. [%]	rel. Empf.	γ [10 ⁷ radT ⁻¹ s ⁻¹]	ω[MHz] bei 7 T
	¹ H	1⁄2	99,985	1	26,7	300,13
	² H	1	0,015	0,0096	4,1	46,05
	¹³ C	1⁄2	1,1	0,016	6,7	75,47
	¹⁴ N	1	99,63	0.00101	1,93	21,7
	¹⁵ N	1⁄2	0,366	0.000003	-2,71	30,4
	¹⁷ O	5/2	0,037	0,029	-3,6	40,6
	¹⁹ F	1/2	100	0,83	25,18	282,2
	³¹ P	1/2	100	0,066	10,84	121,5
www.webelements.com unter: nuclear properties						

NMR-Aktivität von Kernen

¹H : ideal, hohe Häufigkeit, großes γ, in fast allen Verbindungen ²H : selektiv einsetzbar, geringe Häufigkeit, teuer, Quadrupol! ¹²C: inaktiv ¹³C: geringe Häufigkeit, niedriges γ, niedrige Empf. ⇒ Signalverstärkung! ¹⁴N: I = 1 (Quadrupol) ⇒ breite Linien ¹⁵N: I = ½, sehr geringe Empfindlichkeit, negatives γ (P ≠ μ) ¹⁶O: inaktiv ¹⁷O: Quadrupol, geringe Häufigk., negatives γ ¹⁹F: Gute NMR-Aktivität, ω liegt nahe bei ¹H, nur speziell einsetzbar ³¹P: Brauchbare NMR-Aktivität, nur speziell einsetzbar

Resonanzbedingung	
Übergänge vom energieärmeren zum energiereicheren Niveau können induziert werden, in dem man von außen Energie zuführt durch ein zusätzliches Feld B ₁ einer elektromagnetische Welle Mit der richtigen Frequenz v_1 .	
Resonanzbedingung:	
Energie der elektro- magnetischen Welle $E = h \cdot v_1 = \gamma \cdot h \cdot B_0 = \Delta E$ Energiedifferenz der Zeeman-Niveaus	
Übergänge in energiereichere Niveaus \Rightarrow EnergieabsorptionUmkehr derÜbergänge in energieärmere Niveaus \Rightarrow Energieemission \int Spinorientierung	

Magnetische Momente und Magnetisierung nach 90°-, 180°-Puls und bei Sättigung

180°-Puls \Rightarrow Umkehrung der Besetzungszahlen N_{α} , N_{β} (mehr energiereiche)

90°-Puls \Rightarrow N_{α}= N_{β}, aber <u>keine Sättigung</u>, da Quermagnetisierung entstanden. Spins rotieren in Phase.

B₀

Bei Sättigung: Gleichverteilung auf Energieniveaus <u>und</u> in der x-y-Ebene

Fourier-Transformation		
Zeitdomäne \bigotimes_t Frequenzdomäne (Interferogramm, FID) \bigcirc (Spektrum)		
f ($f(\omega) = f(t) \cdot e^{i\omega t} dt$ Die Fourier-Transformation unterteilt den FID in verschiedene Frequenzkomponenten	
Allgemei	n: Je länger die Zeitdomäne, desto schmaler die Frequenzdomäne	
	Apodisation: TD zu kurz	
Beispiele:	konst. $\stackrel{\bigtriangledown}{\longleftrightarrow} t \delta$ -Fkt.	
	exp. \overleftrightarrow{t} Gauss-Fkt. f(t) f(ω)	
	sin $\overset{\nearrow}{\leftrightarrow} t$ δ -Fkt.+höhere Harm. wiggles	

3.6 Relaxationsmessungen 3.6.1 longitudinale Spin-Gitter-Relaxation

Rückkehr der M_z -Magnetisierung durch Energieabgabe an die Umgebung. Relaxation induziert durch Feldfluktuationen durch molekulare Bewegung

Relaxation ist umso effektiver, je mehr die Umgebung mit der Lamorfrequenz fluktuiert.

Relaxationsrelevante Mechanismen:

- Dipolare Relaxation
- Quadrupolare Relaxation (I<1/2)
- Paramagnetische Relaxation (ungepaart e⁻)
- Skalare Kopplung
- CSA

 $\frac{dM_z}{dt} = \frac{M_z - M_0}{T_1}$ $M_0 - M_z = K \cdot e^{-t/T_1}$

cis-trans-Isomerie bei Polydienen					
Neue Doppelbindungen können cis oder trans sein.					
Beispiel: Naturkautschuk (vorwiegend cis-Polyisopren): amorph, weich, elastisch Gutta Percha (vorwiegend trans-Polyisopren): kristallin, hart					
1,4-Verknüpfung H ₂ C $=$ CH ₂ \leftarrow H ₂ C= 1 H_2 C= 1	— н — н — сн с — с 4	1,2-Verknü Vinylgruppe	$ \begin{array}{c} $	CH CH ₂	
Polyisoprene Reaction Conditions	с ^{с н} 2 ^с н ₂ н ₃ с 1,4- <i>cis</i>	<u>ньс</u> ньс с н ₂ 1,4-trans		<u> </u>	
Free radical, emulsion	22%	65%	6%	7%	
Cationic in CHCl ₃	0%	90%	4%	6%	
Anionic, BuLi in pentane	93%	0%	0%	7%	
Coordination, VCl ₃ /AlEt ₃	0%	99%	0%	0%	
Coordination, $TiCl_4/AlEt_3 + amine$	100%	0%	0%	0%	

¹³C-CP/MAS-Spektren (Alkylbereich) von isotaktischen PP (a) und syndiotaktischem PP (b) sowie schematische Darstellung der Kettenkonformation (unten)

Im s-PP werden die inneren CH₂-Gruppen 8,7 ppm stärker abgeschirmt (gauche-gauche) als die äußeren (trans-trans)

8.5 Heterogene Polymersysteme			
Heterogenität in Polymere durch	 NMR-Techniken zur Untersuchung		
- Teilkristallinität	der Heterogenität: Relaxationsverhalten (mono/bi-exp.?)		
- Mischung (teilentmischt,	T ₁ ~ 20 nm, T _{1p} ~ 2 nm Polarisationstranfer; eine Komponente		
phasensepariert)	voll-deuteriert; ¹³ C-Signale? < 1 nm Chemische Verschiebung (z. B. bei		
- Phasenseparierte Block-Copo´s	¹ H-Brücken oder Ladungsverschieb.) Spin-Diffusion: Nivelierung desMagneti-		
- Füllstoffe	sierungsgradient zwischen den Phasen		
Längenskala nm - μm	1-200 nm 2D-Exchange-NMR		

