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Symmetries are among the most fundamental concepts in physics. They de-

termine basic conservation laws as well as the specific properties of everyday

objects as exemplified in solid state physics by the vastly different properties

of graphite and diamond, which only differ in their crystalline atomic arrange-

ment. Systems which have different – sometimes conflicting– symmetries, are of

particular interest, since they may exhibit intriguing properties; one of the best

examples being the self-similar energy structure of a crystal in high magnetic

fields, known as the Hofstadter Butterfly[1]. In this case the periodic transla-

tionally invariant square lattice is in conflict with the rotational magnetic field

and leads to a fractal energy manifold. A simple system, which features multiple

symmetries, is a charged particle, confined in a two-dimensional harmonic oscil-

lator potential – a textbook problem in quantum mechanics, which is separable

in either cartesian or cylindrical coordinates. The corresponding rectangular or

circular symmetries can be lifted selectively by the application of a magnetic

field or by an elongation of the confining potential, respectively. A competition

arises when both perturbations are present, and, depending on their relative

strength, the character of the eigenstates will tend towards circular or rectan-

gular symmetry. The application of a magnetic field will also impose a sense of

rotation upon the system, which can be expressed as the sign of the phase θ in

the azimuthal part of the wave function, e±i|θ|.

It is the purpose of this communication to demonstrate how the concept of competing

symmetries can be investigated in fully quantized few electron systems, using wave function

mapping, and how the wave functions can be altered from rectangular symmetry towards

circular symmetry by the application of a magnetic field. Furthermore, we will show that

under suitable conditions, the tunneling maps are not only sensitive to the shape –or more

precisely the amplitude– of the wave functions but also to their relative phase.

The system under investigation is an ensemble of self-assembled InAs quantum dots,

grown on GaAs using the now well-established Stranski-Krastanov growth mode [2]. These

dots can be charged by single electrons and holes and exhibit a variety of phenomena known

from atomic physics, such as a shell structure [3–5], direct and exchange Coulomb interaction

[6], spin multiplet formation and incomplete shell filling [7]. They are thus often referred to

as ’artificial atoms’. Previous studies have shown that the properties of electrons, confined
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in self-assembled quantum dots, can be well described using a two-dimensional parabolic

harmonic oscillator potential [6]. For the present study, the dots are embedded in a field-

effect transistor structure, shown schematically in Fig. 1, left. When a voltage Vg is applied

to the top electrode (gate), the potential energy of the dots is shifted with respect to the back

electrode. Thus, with increasing voltage, more and more electrons will be transferred from

the back contact into the dots by tunneling through the barrier separating back contact

and dots. Up to 6 electrons can be loaded into the dots, and the gate voltage for each

tunneling event can be determined by simultaneously monitoring the capacitance of the

sample (see Fig. 1, right). More details on the capacitance spectroscopy and the structure

of the investigated samples can be found in Refs. [3, 4, 8, 9] and in section ’Methods’, below.
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FIG. 1: Left: Schematic sample structure. The InAs quantum dots are embedded in a

GaAs/(AlGa)As heterostructure and supplied with electrons from the highly doped back contact

through the GaAs tunneling barrier. The number of electrons per dot can be tuned by the gate

voltage and monitored by capacitance spectroscopy. Right: Capacitance-voltage traces, showing

the subsequent filling of the InAs islands with 1 to 6 electrons. The first two electrons form the so-

called ’s-shell’, the 3rd to 6th electron the ’p-shell’. With increasing magnetic field Bz, the p-shell

exhibits Zeeman splitting with two states decreasing in energy (p−) and two increasing (p+).

To map out the wave function, we use a magneto-tunneling technique, developed by

Patanè et al. [5, 10] and adapted to capacitance spectroscopy by Wibbelhoff et al. [8]:

For sufficiently high AC frequencies, the capacitance signal is determined by the tunneling

probability, which in turn is given by the overlap of the wave functions in the back contact

and the dot [11]. Furthermore, as a consequence of the Lorentz force, an electron that
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FIG. 2: Experimental maps of the tunneling current (capacitance amplitude) between the back

contact and the dot layer as a function of the in-plane magnetic field (Bx, By) for different constant

perpendicular fields Bz. With increasing Bz, the maps develop from a x–y-symmetry towards

circular symmetry.

tunnels a distance ∆z will experience a shift in momentum ky, when a magnetic field Bx is

applied,

∆ky =
eBx

h̄
∆z. (1)

Therefore, by recording the capacitance amplitude as a function of the in-plane magnetic

field I(Bx, By), a map of the probability density in momentum space |Ψ(kx, ky)|2 can be

obtained [5, 8, 10, 12]. Figure 2(a) shows such maps, obtained for the so-called ”p-shell” of

the quantum dots. This shell comprises two orbital states. One, labelled p−, with a node

along the x-axis (given by the [11̄0]-direction of the GaAs crystal) and the other (p+) with a

node along the y-axis ([110] crystal direction) [8, 13]. Because of anisotropic epitaxial growth
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and strain [14], the p−-state is somewhat lower in energy than the p+-state, which gives the

wave functions the distinct x–y-symmetry, seen in Fig. 2(a). This can be accounted for by

a slight elongation of the parabolic model potential V (x, y) = 1
2
mω2

0((1 + ∆)x2 + (1−∆)y2),

where m is the effective mass, ω0 the characteristic frequency of the parabolic confinement,

and ∆ a parameter, which determines its ellipticity.

Figures 2(b) and (c) demonstrate the influence of an additional magnetic field component

Bz (perpendicular to the plane of the dots) on the capacitive current I(Bx, By). It can clearly

be observed that the magneto-tunneling maps exhibit more and more circularly symmetric

character as the perpendicular magnetic field is increased. In the most simple approach,

this can be attributed to a mixing of the x- and y-oriented states, caused by the Lorentz

force. In particular, the map of the p+ state develops towards the ring-like shape expected

for orbitals with non-vanishing angular momentum in high magnetic fields. This shows

how the competition between the anisotropic confinement potential and the magnetic forces

determines the character of the wave function and how the external magnetic field can

be used as an in-situ tuning parameter to shape the wave function from pure rectangular

symmetry (Fig. 2(a)) towards a more circular structure (Fig. 2(c)).

As seen in the lower row of Fig. 2, also the p−-maps exhibit a pronounced magnetic

field dependence, however, they do not develop a ring-like shape. This is surprising at

first, because in high magnetic fields, the wave functions of both p-states should exhibit a

clear minimum in the center (see below). It should be kept in mind, though, that a direct

relationship between the tunneling map I(Bx, By) and the probability density in momentum

space, |Ψ(kx, ky)|2, is only given for vanishing perpendicular field, Bz = 0, as in Fig. 2

(a). Therefore, a more in-depth treatment of the magneto-tunneling with arbitrary field

orientation is necessary in order to properly interpret the tunneling maps.

Our model is an extension of the approach of Patanè et al. [10] and takes into account

the influence of Bz on the states in both emitter and dot. For simplicity, we assume the

emitter to be two-dimensional [15] and take the text-book result for its wave functions in

symmetric gauge, using cylindrical coordinates (r, θ)[16]:

φEnl(r, θ) = eilθ exp

(
− r2

4l2B

)
r|l|L |l|

n−1

(
r2

2l2B

)
. (2)

Here, n and l are the radial and azimuthal quantum numbers, respectively, lB =
√
h̄/|eBz|
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is the magnetic length, and L is the associated Laguerre polynomial. As in the treatment

of the 3-dimensional back contact [10], we assume that tunneling is dominated by the state

with the lowest in-plane energy, which, here, is the lowest Landau level with n = 1 and l ≤ 0

[16]. This energy level is highly degenerate with respect to (negative) l. The probability

density of the states with l = 0,−1,−2 are plotted for magnetic fields Bz = 1, 3, and 9 T

in the top of each panel in Fig. 3.

To obtain the wave functions of an elliptical quantum dot in a magnetic field, we utilize

a finite element method, based on a triangular grid and a linear basis function set. The

eigensolver employs the conjugated gradient minimization of the Rayleigh-quotient and a

Ritz-projection to obtain few eigenvalues and vectors simultaneously. The characteristic

frequency, the effective mass, and the anisotropy parameter are chosen to be h̄ω0 = 60 meV,

∆ = 0.1, and m = 0.07m0, respectively. The leftmost column in Fig. 3 shows the calculated

dot wave functions for magnetic fields Bz = 1, 3, and 9 T. As mentioned above, both p-

states develop from rectangular towards circular symmetry with a distinctive minimum in

the center.

Starting from Bardeen’s tunneling theory, it can be shown that the measured tunneling

current I is to a good approximation given by the overlap of the wave functions in the back

contact and the dot [10, 11]. For the present case, which involves degenerate emitter states

l = 0,−1,−2, ... we find:

I ∝
∑
l≤0

∣∣∣ ∫ ψQD∗(r) φE
1l(r)dr

∣∣∣2. (3)

The shift in momentum caused by the in-plane field (see Eq. 1) is taken into account

by Fourier transformation ψQD(r), φE(r)
FT−−→ ψQD(k), φE(k) and addition of a momentum

contribution h̄(∆kx,∆ky) = (By, Bx)∆z, which finally leads to the relation between the

signal I(Bx, By) and the considered wave functions

I(Bx, By) ∝
∑
l

∣∣∣ ∫∫ ψQD∗(kx, ky) φ
E
0l(kx −∆kx, ky −∆ky)dkxdky

∣∣∣2. (4)

In Fig. 3 the different contributions to the sum are shown in table form for the first

three quantum dot states (s, p−, p+) and three Landau states (l = 0,−1,−2). The color

scales are normalized between 0 and a maximum value, which is given in the bottom left of

each plot. From these numbers, it can be seen that the contribution to I(Bx, By) rapidly
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FIG. 3: Calculated momentum space representation of the lowest quantum dot states (s, p+ and

p−, leftmost column) and three degenerate emitter states of the lowest Landau level (angular

momentum l = 0,−1,−2, top row). The center panels show the overlap integrals of these states in

matrix form. The number in each panel indicates the maximum of the color scale. The rightmost

column depicts the sum of the overlap integrals, which corresponds to the calculated magneto-

tunneling signal. The plots scan a range of ±8× 108 m−1, which corresponds to a field of −13 to

13 Tesla. 7



decreases with increasing |l|. This is because with increasing angular momentum, the radius

of the cyclotron orbit increases, which reduces the spatial overlap with the dot states and

justifies the restriction to l = 0,−1,−2. The rightmost column shows the sum of the differ-

ent contributions, which can be directly compared with the calculated probability density

(leftmost column) and the experimental results. For the higher lying p+-state, we find that

indeed, the magneto-tunneling amplitude gives an accurate representation of the original

wave function. Furthermore, we find good qualitative agreement between the calculation

and the corresponding magneto-tunneling maps shown in Fig. 2, top. For the lower p−-

state, we also find that the experimental data (Fig. 2, bottom), is well reproduced by the

calculated sum. In this case, however, the magneto-tunneling maps do not match the shape

of the wave function in the dot. In fact, not even the central node of this wave function is

preserved and instead, the map exhibits a single maximum at the origin.

The leftmost column in Fig. 3 shows that – apart from a rotation by π/2 – the p− and

p+-states are almost indistinguishable. It therefore comes as a surprise that their magneto-

tunneling maps develop so differently. The reason for this striking fact is that not only the

amplitude of the wave functions is relevant for the tunneling maps but also their phase. This

is most easily seen when the slight elongation of the dot is neglected for the moment. For

a circular dot in a magnetic field there are two p-states with opposite angular momentum

lQD = −1 and lQD = +1, which have the same or the opposite sense of rotation as the

emitter states, respectively. If we only take the angular part Mθ of the overlap integral in

Eq. 3, and consider the emitter state with angular momentum l = −1, we find

Mθ =

∫ 2π

0

e−il
QDθe−iθdθ =

 2π for lQD = −1

0 for lQD = +1
. (5)

This explains why, at a high magnetic field of 9 T, the overlap of the p+ level with the

l = −1 emitter state is almost an order of magnitude smaller than with the p− dot state.

Therefore, the p+-state is mainly mapped out by the ’sharp tip’ of the l = 0 emitter state, so

that the map gives an accurate image of the wave function in momentum space. On the other

hand, the magneto-tunneling map of the p−-state is dominated by the contribution of the

l = −1 ’annular tip’ at high magnetic fields and this contribution is maximum when the wave

functions are concentric (unshifted), i.e., for Bx = By = 0. This leads to the pronounced

maximum in the center of the magneto-tunneling map found in both experiment and theory
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at Bz = 9 T.

Our measurement thus clearly demonstrate that not only the amplitude of the wave

function determines the tunneling characteristics but also the sign of the phase factor. It

should be pointed out, though, that our experiment is only sensitive to the phase factor

relative to that of the back contact. In this respect, the experimental situation is similar to

optical holography, where also the phase sensitivity is made possible by comparison with a

reference system.

I. METHODS

The investigated samples were grown by solid-source molecular beam epitaxy on a

GaAs(100) semi-insulating substrate. The active part of the structure (see Fig. 1, left)

starts with a 300 nm GaAs buffer, followed by a 20 nm thick Si-doped back contact and a

42.5 nm GaAs tunneling barrier. The dot layer was grown by depositing about 1.5 mono-

layers of InAs at 570◦, leading to a dot density of about 1 × 1010 cm−2, and covered by

30 nm GaAs. The blocking layer consists of a 216 nm thick Al0.75Ga0.25As digital alloy,

capped by 10 nm GaAs. Ohmic contacts were provided by alloying AuGa pads and the

gate electrode was prepared by evaporating NiCr and using standard optical lithography.

All measurements were performed at 4.2 K in a liquid-He cryostat equipped with a super-

conducting solenoid and a 2-axes rotational sample holder. The capacitance-voltage traces

were recorded at 6033 Hz using standard lock-in technique with Vmod ≈ 5 mV.
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