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The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in

solids, a splitting that is characterized by a scaling with the wave vector k. Whereas for 3D bulk zinc

blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells,

the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such

expectations are based on using a small 3D envelope function basis set to describe 2D physics. By

treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of

hole states in 2D. This scaling emerges from coupling of hole bands that would be unsuspected by the

standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k scaling

for holes in 2D implies a different understanding of hole physics in low dimensions.
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Spin-orbit interaction causes the energy levels of 3D
bulk-solids [1] and 2D quantum wells [2] to exhibit a
zero-field spin splitting for sufficiently low-symmetry
states. Attention has recently focused on spin of holes in
2D quantum wells (QWs) (because of their spin-Hall effect
[3]) and in 0D quantum dots (because of the highly coher-
ent hole spin [4] and unusually long hole spin lifetime
[5,6]). On the theoretical side, the long-standing tradition
[1,2,7–9] has been to describe hole or electron spin physics
in low-dimensional (<3D) nanostructures by an expansion
in a rather small basis of 3D bulk envelope functions, using
effective-mass approaches. In general, when a basis set is
restricted, the resolution of the expansion is limited. Low-
resolution expansions can be ‘‘far sighted’’ [10] in that the
actual atomistic symmetry of the 0D, 1D, or 2D object [11]
is replaced by a fictitious higher symmetry, thus missing
important degeneracy-splitting and interband coupling ef-
fects. The farsightedness can be cured by systematically
increasing the basis set [12] or by introducing ad hoc terms
in the Hamiltonian intended to lower the symmetry
[13,14]. Both modifications come at the expense of intro-
ducing more parameters that are not calculable by the
envelope function theory itself. Indeed, in the standard
model for spin splitting (SS) of nanostructures [15–17],
one uses a phenomenological Hamiltonian where one
needs to decide at the outset which 3D bands couple in
2D by the spin-orbit interaction (SOI), rather than have the
theory force such realization upon us. The potential of
missing important physical interactions not selected to be
present in the model Hamiltonian can be substantial [10].

The current state of the art for the hole states in 2D is
illustrated by the work of Bulaev and Loss [15]. Starting
from a bulk 3D Hamiltonian restricted to heavy-hole (HH)
and light-hole (LH) bands (‘‘4� 4’’), they have derived an
effective 2� 2 Hamiltonian for the 2D heavy-hole (hh0)

subband, demonstrating an exact cancellation of the linear-
in-k (Dresselhaus) terms [15]. This result (implying a pure,
uncoupled hh0 state in low dimensions) has been used in
numerous theories of hole spin in 2D QWand 0D quantum-
dot systems, including an estimation of the hole spin-
relaxation time [5], demonstration of intrinsic hole spin-
Hall effect [18], and other hole spin related phenomena
[19–21]. We adopt instead a different approach in which
the 2D nanostructures is viewed as a system in its own
right, rather than express it in terms of a preselected basis
drawn from a reference 3D system.We do so by solving the
2D band structure using explicitly the microscopic poten-
tial of the 2D system under consideration, thus freeing us
from the need to judge at the outset which selected 3D
bands (e.g., 4� 4 in Ref. [15]) will couple in 2D. The
results show an hitherto unsuspected linear term for holes.
This discovery of a linear Dresselhaus k scaling for holes in
2D implies a different understanding of hole-physics in
low dimensions.
The central point of the approach utilized here is that the

3D and 2D systems are each described by their own micro-
scopic Hamiltonian which is solved in basis sets whose
sole property is that it produces a converged solution to the
system at hand. Physical understanding is not sacrificed as
it emerges later from the ex post facto analysis of the final
result in the language of basis set expansion.
We use a rather general microscopic Hamiltonian in the

‘‘GW representation’’

HGW ¼ � 1

2
r2 þHso þ ½Vext þ VH þ ��; (1)

where Vext is the electron-ion potential, VH is the intere-
lectronic Hartree potential of the specific (3D or 2D)
system, � ¼ iG0W is the self-energy with W being the
screened Coulomb interaction, and G0¼1=ð!�H0� i�Þ
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is the Green’s function of a noninteracting Hamiltonian
H0. The latter is determined self-consistently so as to
minimize the difference, within the GW approximation,
between the many-body HGW and H0 [22]. (Thus,
exchange-correlation effects are included within the
QSGW theory, not LDA). This QSGW approach predicts
accurate energy bands for a wide range of materials [23],
including the Dresselhaus splitting in bulk GaAs [22,24].

The approach described above is computationally inten-
sive and can be readily applied only to rather small nano-
structures. Thus, for computational expediency, when
considering larger period quantum wells [e.g.,
ðGaAsÞn=ðAlAsÞn with n � 2], we will map both the
small-n behavior and the n ¼ 1 (bulk) QSGW solutions
of Eq. (1) to a screened pseudopotential Hamiltonian that
captures the former limits yet can be readily applied to
orders of magnitude larger systems (106 atoms were dem-
onstrated in Ref. [10]):

HPP ¼ � 1

2
r2 þHso þ

X

n;�;j

v�ðr�Rn � d�;jÞ: (2)

Here, the external (Vext) plus screened (VH þ �) terms of
Eq. (1) are described by a superposition of atom-centered
functions v� (where d�;j is the position of atom j of type �

in the n-th cellRn). They can be constrained to fit approxi-
mately yet accurately the QSGW calculated SS of bulk
solids (n ¼ 1) [25] and of low-period (n� 2) 2D QWs. In
addition, they reproduce the bulk band gaps and electron
and hole effective-mass tensors, as well as band offsets
[10,11,25]. The spin splitting �i of band i obtained by the
direct calculation of Eqs. (1) and (2) will be fitted to the
conventional form �i ¼ �ikþ �ik

3 for i ¼ electrons ðeÞ
or holes (h), allowing both linear and cubic terms to be
present.

Results of the many-body multiband calculation.—For
3D bulk GaAs, Fig. 1 shows our results along (110) direc-
tion in the Brillouin zone, demonstrating the linear and
cubic SS of the three lowest conduction bands (CB1, CB2,
and CB3) and three highest valence bands (HH, LH, and

SO). We find that the SS of all bands has a cubic term �ð3DÞ
i ,

but only HH, LH, and CB3 with angular momentum J ¼
3=2 have linear term �ð3DÞ

i . The screened pseudopotential
solution of Eq. (2) gives similar results to QSGW (see inset

to Fig. 1). The exception is that Eq. (2) gives �ð3DÞ
i ¼ 0 for

all bands because this approach is coreless and this term
results from coupling to the core states [26]. Fortunately,
according to k � p description, in 2D �3D

i leads to a term of
small magnitude and independent on period n; such small
contributions can be safely neglected for small period.

For 2D ðGaAsÞ2=ðAlAsÞ2 superlattice, the SS of elec-
trons obtained by the atomistic multiband approach agrees

well with k � p [9] in that the linear term �ð2DÞ
e / �ð3DÞ

e =d2

originates from the folding-in of 3D bulk cubic term �ð3DÞ
e

due to the confinement to a well of width d. This is not the
case for holes. The SS of 2D hole subbands (hh0, lh0, and

hh1) is presented in Fig. 2 along the (100) direction. Both
atomistic multiband methods [Eqs. (1) and (2)] show: (i) a
linear scaling of SS for all three hole subbands including
hh0. This is in striking contrast to a cubic-only scaling of
hh0 in the model-Hamiltonian derived by Bulaev and Loss

[15]. (ii) The linear term dominates the SS at small k;�ð2DÞ
hh0 ,

�ð2DÞ
hh1 , and �ð2DÞ

lh0 are comparable. Our results of Figs. 2 and

3 demonstrate a linear-in-k term for 2D hh0 holes, inde-
pendent of any k � p modeling. In what follows, we will
attempt to discuss ex post facto some of the features of the
predicted linear term in the language of k � p.
The standard 2� 2 model Hamiltonian for 2D does not

explain the results. Bulaev and Loss [15] have shown that
starting from a 4� 4 basis in 3D, there is no linear terms
for hh0 in the 2D model Hamiltonian. However, they did
not include the 3D relativistic cubic terms of �8v bands in
their derivation. Rashba and Sherman [17] demonstrated
earlier that the 3D relativistic cubic terms can give rise to
2D linear term for hh0 subbands [Eq. (8) in Ref. [17]]. We
tested this idea calculating the 2D SS using a pseudo-
potential which was constructed to fit the Rashba-
Sherman 3D band structure including the relativistic cubic
terms. The results of the pseudopotential calculation for 2D
(in which all bands are allowed to couple) are compared
with the Rashba-Sherman 2D model (in which the 2D hh0
band is uncoupled). Figure 3 shows that for sufficiently
large superlattice periods n (for which the 2D model of
Ref. [17] is applicable), the model recovers only a small
fraction of the multiband results for linear SS of 2D hh0.
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FIG. 1 (color online). QSGW predicted SS of 3D bulk GaAs
for the three lowest conduction bands (a) CB1, (b) CB2, and
(c) CB3, and three highest valence bands (d) VB1, (e) VB2, and
(f) VB3. Dresselhaus constants �i in meV �A and �i in eV �A3

predicted by QSGW and screened pseudopotential fit to QSGW,
respectively, are given for each band in the inset. We give the
absolute value of � and �.
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For smaller periods (n � 20), we report in Fig. 3(a) a clear

nonmonotonic period dependence of both �ð2DÞ
hh0 and �ð2DÞ

lh0 ,

with �ð2DÞ
hh0 to �ð2DÞ

lh0 ratios varying from �10 to <1 as the

period decreases from 50 to 2 ML. This is in sharp contrast
with the predictions of the model Hamiltonian [17] which
predicts a monotonic increase of linear terms and a ratio of

�ð2DÞ
hh0 to �ð2DÞ

lh0 which is independent of d.

Sources and magnitude of coupling between 3D
bands.—The quantitative and qualitative disagreements
of atomistic multiband calculation with the standard model
Hamiltonian approach suggest possible undiscovered SOI
terms. Such terms due to symmetry lowering down from
3D Td bulk symmetry to 2D D2d QW symmetry could
originate from coupling of 3D bands via the 2D potential
and SOI (e.g., a linear-in-k dependence can be generated
by symmetry lowering via strain [26]). Such coupling is
signaled by the distinctly nonparabolic 2D energy disper-
sion curves manifesting clear anticrossings between neigh-
boring subbands [see multiband calculation in the inset to
Fig. 3(b)]. This inset shows also that the lh0 level lies
between the hh0 and hh1 levels in 2D which is true for
all multiband-calculated GaAs periods. Clearly, the cou-
pling of 3D states and its effects on SS of 2D bands can not
be ignored.
Indeed, zero coupling between 3D HH and LH states at

kk ¼ 0 is often assumed, although the 2D potential and

SOI introduce such couplings. If one starts from the 3D
8� 8 Kane model, neglecting the relativistic terms, which
we find to be small, and reduces it from 3D to 2D, one gets
a Hamiltonian with no HH-LH coupling at all, thus no
linear term. The reason is that this restricted k � p basis set
does not ‘‘see’’ the real symmetry of the subband in 2D
[10]. In such model Hamiltonian approaches [15,17], the
hh0, hh1, . . ., wave functions near the zone-center in 2D all
derive from a single bulk state jHHi and similarly, all lh0,
lh1 . . ., wave functions in 2D derive from a single bulk
state jLHi. A better approach than this ‘‘band decoupled’’
model Hamiltonian [15,17] approximation would allow the
2D state hh0 to derive from a few bulk states. In such a
‘‘mixing of decoupled states’’ approximation,

�ð2DÞ
hh0 ¼ wð2DÞ

hh0 ðHHÞjHHi þ wð2DÞ
hh0 ðLHÞjLHi þ � � � ; (3)

where wð2DÞ
hh0 ð�Þ is the percent weight of 3D state � ¼

HH;LH; . . . in the 2D state �ð2DÞ
hh0 . In the band decoupled

model, wð2DÞ
hh0 ð�Þ 	 0 for � � HH. We have calculated the

weights by numerical projection of the 2D pseudopotential
wave functions and show them in Fig. 4. The interband
coupling is large even at the zone center. We see that
whereas for long periods (GaAs thickness 
 20 ML) the

mixing is small (i.e., �ð2DÞ
hh0 is made of 90% jHHi and 5%

jLHi), for shorter periods, the mixing increases (the LH

content of �ð2DÞ
hh0 increases to 10–20%).

As expected, the interband mixing will approach zero as
the period n goes to infinity, but the convergence is very
slow and nonmonotonic. This nonmonotonic mixing is
evident in Fig. 4 by the increase of 3D-HH character in
the 2D lh0 state as the period increases from 50 to 80 ML.
The reason is that the magnitude of the mixing is inversely
proportional to the QW period and to the energy splitting
of 2D hh, lh, and so subbands. But the latter splitting is also
inversely proportional to the QW period. This nonmono-
tonicly enhanced mixing of LH and HH into the 2D hh0 as
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FIG. 3 (color online). (a) Comparison of linear SS coefficients
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hh0 and �ð2DÞ

lh0 calculated from present pseudopotential multi-

band approach (solid circles), as well as by the Rashba-Sherman
model Hamiltonian (open circles), and mixing approximation
[Eq. (4); open squares] for 2D ðGaAsÞn=ðAlAsÞ20 QWs.
(b) Expanded scale for long-period QW’s highlighting the com-
parison of hh0 subbands for the direct calculation vs model
Hamiltonian and mixing approximation. Inset shows energy
dispersion of valence subbands for 2D ðGaAsÞ20=ðAlAsÞ20 cal-
culated by atomistic pseudopotential approach. Each orbit sub-
band has two spin subands.
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the QW period is reduced signals the breakdown of the
model-Hamiltonian-thinking that neglects such mixing on
the ground that the energy splitting of hh0-lh0 must be
larger than that of hh0-hh1 for sufficient small periods [15].

Analysis of linear term.—The linear coefficient of 2D
hh0 SS can be written in terms of the weights in Eq. (3) in a
model of ‘‘mixing of decoupled states’’ as

�ð2DÞ
hh0 ¼ �wð2DÞ

hh0 ðHHÞ~�ð2DÞ
hh0 þ wð2DÞ

hh0 ðLHÞ~�ð2DÞ
lh0 þ � � � ; (4)

where ~�ð2DÞ
hh0 ð~�ð2DÞ

lh0 Þ is the contribution of a single bulk HH

(or LH) band to linear SS of 2D hh0 (1h0), which had been
derived by Rashba and Sherman [17] (the negative sign
accounts for band repulsion effect). The result of the first
two terms in Eq. (4) is shown as open squares in Fig. 3 and

is compared with the multiband-calculated �ð2DÞ
hh0 (solid cir-

cles). We see that the mixing of decoupled states [Eq. (4)]
gives a much better approximation to the full calculation
than the model Hamiltonian treating one decoupled band at
a time (open circles in Fig. 3) {see note (i) in supplemen-
tary material [27]}. Going from 3D to 2D entails simulta-
neously (i) a symmetry lowering (from Td to D2d), as well
as (ii) an increase in HH-LH splitting due to different
confinement of HH and LH. One might think that whereas
(i) will encourage a linear term (due to additional HH-LH
coupling at lower symmetry), effect (ii) might discourage it
because it presumably reduces HH-LH mixing which is
argued to be the cause of the linear term. The traditional
approach is to assume that the second effect dominates, and
the coupling effects will be small (can be treated perturba-
tively [15], or neglected altogether [16]). However, realis-
tic calculations disprove this intuitive guess. Figure 4
shows the degree of HH-LH coupling in a realistic QW
demonstrating that whereas this mixing is rather small in
2D hh0 (5% 3D-LH character for n 
 20), the ensuing ef-

fect on SS is nevertheless very large, since ~�ð2DÞ
lh0 is sig-

nificantly larger than ~�ð2DÞ
hh0 . Thus, the mixing of bulk bands

leads to a large linear SS of 2D hh0, and is unsuspected by
the standard model that judges coupling by energy prox-
imity {see note (ii) in supplementary material [27]}.
The emergence of a large linear term for Dresselhaus

hole SS in 2D nanostructures suggests (i) the dominance of
Dresselhaus over Rashba SOI (having a cubic term as its
lowest order term) [15], (ii) a larger spin-Hall effect [18],
and (iii) an explanation of the observed large optical an-
isotropy [14]. The occurrence of a larger SS of hh0 corre-
sponding to HH-LH coupling leads to a shorter hole spin-
relaxation time in 2D QWs [6] from the D’Yakonov and
Perel (DP) mechanism [7].
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