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Abstract 

Single-particle plus many-particle calculations of the electronic states of semiconductor 

nano dumbbells illustrate how geometrical features (e.g. the width of the dumbbell wire) 

determine, through quantum confinement and electron-electron correlation effects, the 

localization of the wave functions. Remarkably, we find that many-body effects can alter 

carrier localization, thus affecting the transport properties of nano circuits that include 

quantum dots and quantum wires. This is important, as most of the current transport 

calculations (using Landauer formula) neglect many-particle effects. We further show 

how the degree of entanglement and the exciton binding energies depend on the nano 

circuit geometry. 
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The current technological pursuit of electronic nano devices [1-6], based on 2D 

quantum wells, 1D quantum wires, and 0D quantum dots of ever decreasing sizes, is 

rapidly approaching systems where carrier localization and transport are entirely 

controlled by quantum effects. Transistors made of a carbon nanotube [1], or a single 

semiconductor nanowire [2], or a few colloidal nanocrystals [3], as well as single electron 

[4,5] or hole [6] tunneling into gated quantum dots, all exemplify the trend towards low-

dimensionality and nanometer-sized circuit components, as envisioned by the electronic 

industry roadmap [7]. Most theoretical descriptions of nano systems pertain to isolated 

building blocks of nano-circuits, such as 0D quantum dots [8], 1D quantum wires [9], and 

2D quantum wells [10], and little is known on the quantum behavior of complex 

assemblies of such building blocks. Recent calculations on simple assemblies of 

nanostructures of the same dimensionality, such as 0D diatomic “dot molecules” [11] or 

0D “dot crystals” [12], have already revealed the importance of potentially transport-

impeding effects, such as correlation-induced (Mott) localization of the carriers on 

fragments (building blocks) of the entire system. Despite this intiuitive knowledge, most 

transport calculations in molecules and nanostructures use the Landauer formula [13], 

which neglects many-body effects. Of particular interest here are such quantum effects in 

mixed-dimensionality systems (e.g. dots + wires), which are the necessary architectural 

elements of nano circuits [7]. Consider, for example, the simplest combination of 

building blocks of different dimensionalities: A “nano dumbbell” made of two 0D dots of 

radius RD connected by a 1D wire of radius RW. Such systems have been recently made, 

e.g. by Mokari et al. [14]. Figure 1 illustrates how the single-particle electronic structure 
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could depend critically on the wire radius RW. For a wide wire (Fig. 1a), reduced 

quantum confinement in the wire causes the wire electron energy level eW to drop below 

the dot energy levels eD, with ensuing localization of the electron wavefunction on the 1D 

wire segment. For a narrow wire (Fig. 1b), increased quantum confinement in the wire 

raises the energy level eW above eD, leading to migration of the wave function into the 0D 

dots. It is likely, however, that many-particle effects could modify this picture in a 

substantial way. Consider, for example, the case of two electrons simultaneously present 

in the dumbbell system. Electron correlation induced by the energetic and spatial 

proximity of various single-particle levels of Fig. 1 would lead to a mixture of the single-

particle ground and excited states. Depending on the relative sizes RD and RW, the many-

particle wave function (made of a coherent superposition of single-particle states) could 

be delocalized over the entire wire+dots system, even though the lowest-energy single-

particle state is localized only on the wire. Clearly, a proper theory of carrier localization 

and transport in nanocircuits must include both single-particle and many-particle effects 

[15]. 

Several methodologies are available in the literature for combining a single-particle 

description with a many-body treatment. “First-generation” approaches are based on (i) 

continuum effective-mass single-particle theories, such as the one-band particle-in-a-box 

effective-mass approximation (see e.g. Ref. [16]) or the few-band k.p approximation (e.g. 

Ref. [17]). These single-particle approaches model quantum confinement, but either 

neglect [16] or oversimplify [17] the effects of inter-band coupling (e.g. the coupling 

between various bands at a given point of the Brillouin zone), inter-valley coupling (e.g. 

between the Γ, X, and L valleys), as well as surface effects [17] and strain effects [16]. 
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These approximations lead to quantitative errors [18], and often even to a qualitative 

misrepresentation of the correct nanostructure symmetry (the so called “farsightedness 

effect” [19]). These continuum-like effective-mass approaches have been combined with 

many-body treatments such as quantum Monte Carlo [20] or configuration interaction 

(either for k.p [21] or for the single-band effective mass [22]), enabling calculations of 

large (up to 107 atom) systems. “Second generation” approaches are based on (ii) 

atomistic single-particle theories (such as tight-binding [23] or empirical 

pseudopotentials [24]) which include a broad range of single-particle effects (e.g. inter-

band and inter-valley coupling, surface passivation, strain, compositional 

inhomogeneity), albeit via empirical parametrization of the bulk Hamiltonian. These 

approaches have also been combined with many-body approaches, such as configuration-

interaction (either in the context of tight-binding [25] or pseudopotentials [26]), enabling 

calculations on 103-106 atom systems [11,26]. What we are aiming at is a “third-

generation” approach, based on (iii) first-principles atomistic single-particle theories 

(such as plane-wave LDA) combined with a sophisticated many-body approach. To date, 

such combinations of methodologies are limited to tiny nanostructures [27, 28], because 

both the single-particle LDA method and the many-body approaches are enormously 

demanding from a computational point of view. Here we combine an atomistic, LDA-

quality single-particle “charge-patching” approach [29] with a configuration-interaction 

many-particle method [26] to calculate quantum confinement and electron localization in 

semiconductor nano dumbbells containing up to 6,000 atoms. We show how single-

particle effects lead to specific localization patterns, and how many-body effects can 

reverse them. The significance of such calculations is in elucidating the way that the 
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geometry and dimensionality of the building blocks of a model nano circuit can affect 

carrier localization and transport through a conspiracy of single-particle and many-

particle effects. 

We consider here nano dumbbells consisting of two nearly-spherical CdTe dots (RD = 

25 Å) connected by a 30 Å-long CdSe wire of variable radius RW. Both the dots and the 

wire have the zinc-blende lattice structure with the axis of the wire in the (001) direction.  

Surface atoms are passivated using a ligand-like potential. Figure 2 shows the atomistic 

structure of one of the nano-dumbbells used in the calculations. This system consists of 

nnn Cd, Se, and Te atoms plus nnn passivants. The atomic positions are relaxed using an 

atomistic valence force field model. The total valence charge density of the relaxed 

system is constructed using the charge-patching method [29]. In this method, small 

prototype systems with similar local atomic structures as the dumbbell are calculated 

selfconsistently with density functional theory (DFT). The total valence charge densities 

of these prototype systems are decomposed into charge motifs belonging to different 

atoms. Then these charge motifs are assembled together to generate the charge density of 

the dumbbell. The typical density error generated this way is less than 1% compared with 

direct ab initio selfonsistent calculations. The resulting absolute eigen energy error is 

about 20 meV, and inter state splitting energy error is less than a few meV. After the 

charge density is obtained,  the local density approximation formula of DFT is used to 

generate the total potential, and the single particle Schrodinger’s equation is solved using 

the folded spectrum method [24]. The detail procedure of the charge patching method 

was reported in Ref.[30].   
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The calculated single-particle wave functions and energies of several near-edge states 

are shown in Fig. 3 for three values of RW. The localization of near-edge states can be 

understood qualitatively by considering the CdSe wire and the two CdTe dots as separate 

building blocks, and allowing perturbative coupling between wire (W) and dots (D1 and 

D2) single-particle states, as illustrated in Fig. 4. For all the dumbbell geometries 

considered here, the valence-band maximum (VBM) is an anti-bonding combination of 

the two s-like valence states localized on the CdTe dots (bottom panels of Fig. 3). This is 

so because the valence band offset between CdTe and CdSe [31] (see Fig. 1) places the 

VBM of CdSe deeper in energy. Figure 3 shows that the wave function character of the 

conduction-band minimum (CBM) depends strongly on the radius RW of the wire. In the 

case of a narrow wire (Figs. 3a and 4a), quantum-confinement pushes the energy of the 

wire states well above the lowest-energy dot states, and coupling between dot states and 

wire states is relatively small. As a result, the lowest-energy electron states, ψ1 and ψ2, 

correspond to bonding and anti-bonding combinations of pure dot states (D1±D2), as 

shown in Figs. 3a and 4a. In the opposite case of a wide wire (Figs. 3c and 4c), the 

lowest-energy wire state (W) drops below the dot states (D1±D2) as a result of reduced 

quantum confinement. The CBM ψ1 corresponds to an s-like state localized on the wire 

(Figs. 3c and 4c). The next two states ψ2 and ψ3 are also localized on the wire, and have 

px-like and py-like envelope functions, respectively. In the case of a wire of intermediate 

size (Figs. 3b and 4b), we observe strong coupling between wire and dots conduction 

states. The dot-dot bonding state (D1+D2) is strongly coupled to the wire s-like state (W). 

This coupling leads to a CBM made of the bonding combination ψ1=D1+D2+W. 

Interestingly, the anti-bonding combination ψ3=D1+D2-W is higher in energy than the 
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dot-dot anti-bonding state ψ2=D1-D2, because by symmetry D1-D2 cannot couple to wire 

s-like states. 

 To examine the effects of electron-electron interactions on the localization of the wave 

functions, we consider a system of two conduction-band electrons in the dumbbell. The 

calculation of the many-body states is performed using the configuration-interaction (CI) 

approach described in Ref. [26]. First, we calculate screened electron-electron Coulomb 

and exchange integrals of the form: 
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where ),( σψ ri are the single-particle wave functions (Fig. 3), which depend on the spatial 

variable r and the spin variable σ. The Coulomb interaction is screened by the dielectric 

function, which we assume [32] to have the bulk value of the constituents inside the 

dumbbell, and to decay to εout=1 outside. Next, we set up and diagonalize the 

configuration-interaction Hamiltonian using a basis set of Slater determinants 

(configurations). In all cases considered here, the basis set consists of the orbital and spin 

configurations constructed from the first three conduction-band states (ψ1, ψ2, and ψ3), 

corresponding to a total of 15 Slater determinants. All other conduction-band states are 

much higher in energy, so their contribution to low-energy many-particle states is small. 

Once the many-particle wave functions have been obtained, we calculate the degree of 

entanglement (DOE) using a generalization of the Von Neumann definition of 

entanglement to identical fermions [33]. We also calculate the pair correlation function 

(GB: show formula here), which gives the probability to find and electron at r given that 

the second electron is located at r’ [33]. 
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The results of the many-body calculations are shown in Figs. 5-7, where, for 

transparency of the pertinent physics, we consider four levels of approximation (from left 

to right in each figure): (a) In the single-particle approximation, the energy of the 

configuration |ψi ψj> (a single Slater determinant constructed from the single-particle 

orbitals ψi and ψj) is given by the sum of the single-particle energies (εi + εj). (b) In the 

next level of approximation (single-particle plus diagonal Coulomb), we include the 

diagonal Coulomb energies (Jij,ij), describing the direct repulsion between an electron in 

the single-particle state ψi and an electron in ψj. This is equivalent to first-order 

perturbation theory [14]. (c) In the “single-configuration” approximation, the Coulomb 

and exchange interactions between different spin configurations corresponding to the 

same orbital configuration are included. Thus, each configuration |ψi ψj> (with i≠j) splits 

into a singlet and a triplet. (d) Finally, in the full configuration-interaction calculations all 

the orbital and spin configurations consistent with a given number of single-particle states 

are used to expand the many-body wave functions.  

In the case of the wide-wire dumbbell the first few conduction states (ψ1, ψ2, and ψ3) 

are all localized on the wire, and are separated by large energy spacings (Fig. 3c). As a 

result, correlation effects are small (Fig. 5), and the two electrons in the dumbbell form a 

singlet state |ψ1ψ1> corresponding to double occupancy of the lowest-energy wire state 

ψ1. Since the ground state can be described by a single Slater determinant, the DOE is 

nearly zero. The correlation function (bottom panel of Fig. 5) is very similar in the 

correlated and uncorrelated cases. If one electron (blue circle) is placed at the center of 

the wire, then the second electron (orange cloud) is also localized on the wire. The 
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excited states are a singlet and a triplet derived from |ψ1ψ2>, with an exchange splitting 

of 64 meV.  

In the opposite situation of a thin-wire dumbbell (Fig. 6), the first two conduction states 

(ψ1 and ψ2) are bonding and anti-bonding linear combinations of dots states, respectively 

(Fig. 3a). We can construct three configurations of the two-electron system using ψ1 and 

ψ2: two singly-degenerate configurations |ψ1ψ1> and |ψ2ψ2>, and one four-fold 

degenerate configuration |ψ1ψ2>. These configurations are shifted up in energy  by direct 

electron-electron Coulomb interaction (Fig. 6b). The electron-electron exchange 

interaction (Fig. 6c) splits the configuration |ψ1ψ2> into a singlet and a triplet, separated 

by 110 meV. Finally, configuration interaction strongly (Fig. 6d) mixes the 

configurations |ψ1ψ1> and |ψ2ψ2>, leading to a many-body singlet ground-state that is a 

linear combination of those two configurations. This state has the maximum degree of 

entanglement (DOE=100%). Since in the single-particle description the first wire state is 

significantly higher in energy than the dot states (Fig. 3a), the physics of the two-electron 

dumbbell system is analogous to that of two dots without a connecting wire [33]: The 

first four states correspond to the two electrons being localized on different dots (with the 

singlet state slightly lower in energy than the triplet state), as a result of electron-electron 

repulsion. The next two states correspond to the two electrons being localized on the 

same dot. The localization of the electrons on opposite dots is driven by correlation 

effects, as demonstrated by the correlation function plot shown at the bottom of Fig. 6: 

When one electron is located at the center of the left dot (blue dot), then the second 

electron (yellow cloud) is delocalized on both dots in the uncorrelated case, but only on 

the right-hand side dot in the correlated case. 
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Finally, we consider the case of intermediate wire thickness (Fig. 7). In this case there 

are several configurations in a narrow (<100 meV) energy interval. An immediate 

consequence is that direct Coulomb interactions change the order of the configuration 

energies. Configurations that are four-fold degenerate (due to spin degeneracy) at the 

single-particle level (Fig. 7a and 7b), split in the single-configuration approximation (Fig. 

7c) into a singlet and a triplet. The ground state is the triplet state originating from the 

configuration |ψ1ψ2>. However, configuration interaction mixes states of the same spin 

multiplicity, leading to a ground state that has contributions from several configurations 

(|ψ1ψ1>, |ψ1ψ3>, and |ψ2ψ2>), as shown in Fig. 7d. Strong correlation effects alter the 

distribution of the two electrons: A plot of the correlation function (bottom of Fig. 7) 

shows that while the two electrons are localized mainly on the wire in the uncorrelated 

case, they are located on the dots when configuration interaction is taken into account. 

The degree of entanglement in this case takes an intermediate value of 61%, showing a 

certain mixing of configurations that does not lead, however, to a purely symmetric or 

antisymmetric state with maximum entanglement.  The next excited states originate  from 

the |ψ1ψ2> triplet states with some admixture of |ψ2ψ3> character. These 3 fold 

degenerate states have a degree of entanglement between 80 and 97%. 

The localization of the single-particle wave functions has direct consequences on the 

optical properties of the nano dumbbells. As the wire becomes narrower, the CBM wave 

function migrates from the CdSe wire to the CdTe dots, while the VBM wave function 

remains localized on the CdTe dots, as shown in Fig. 3. Thus, the band alignment of the 

dumbbell changes from type-I to type-II, affecting the exciton binding energy. We have 

calculated the exciton energies of the nano dumbbells using the configuration-interaction 
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approach [26]. We have included two valence-band states and two conduction-band states 

in the CI expansion. The exciton binding energy is given by XXb EEE −= 0 , where 0
XE  is 

the energy of the lowest electron-hole pair in the un-correlated (single-particle) case, and 

XE  is the energy of the exciton in the CI calculation. For a narrow CdSe wire (Rw = 8Å) 

both the VBM and the CBM wave functions are localized on the CdTe dots, resulting in a 

relatively large electron-hole binding energy (Eb=115 meV). As the CdSe wire becomes 

wider, the exciton binding energy decreases to 86 meV for Rw = 10 Å and 59 meV for 

Rw=15 Å. 

In conclusion, we have shown that the localization of single-particle wavefunctions in 

CdSe/CdTe nano dumbbells can be controlled by changing the radius of the CdSe wire. 

As the wire becomes narrower, the wire electron states are pushed higher in energy 

compared to the dot electron states, so the lowest electron state changes its localization 

from the wire to the dots. When the band-edge states of the CdSe wire are brought into 

resonance with those of the CdTe dots, strong correlation effects dominate the spatial 

localization and the degree of entanglement of the two-electron wave functions. These 

results illustrate how quantum confinement and correlation effects determine carrier 

localization and electronic transport in semiconductor nano devices. [possible sentences 

to add]: Our work demonstrated that composite nanostructures like the dumbbell can 

serve as platforms to manipulate the many-body effects and quantum entanglements, thus 

they can be used for studying the basic quantum physics, and at the same time for 

potential quantum electronic device and quantum computing applications.  

This work was supported by the DOE-SC-BES initiative LAB03-17, under NREL 

Contract No. DE-AC36-99GO10337, and LBNL Contract No. DE-AC03-76SF00098. 



 13 

This research used the resources of the National Energy Research Scientific Computing 

Center.  



 14 

References 

 

[1] P.G. Collins and P. Avouris, Scientific American 283, 62 (2000). 

[2] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber, Science 

294, 1313 (2001). 

[3] D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, and P.L. McEuen, Nature 389, 

699 (1997). 

[4] S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, 

Phys. Rev. Lett. 77, 3613 (1996); L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S.  

Danoesastro, M. Eto, D.G. Austing, T. Honda, and S. Tarucha, Science 278,  1788 

(1997) 

[5] R.J. Warburton, C Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. Garcia, 

W. Schoenfeld, and P.M. Patroff,, Nature 405, 926 (2000). 

[6] D. Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. 

Lorke, and J.C. Maan, Phys. Rev. Lett. 94, 026808  (2005). 

[7] International Technology Roadmap for Semiconductors, http://public.itrs.net 

[8] D. Bimberg, N.N. Ledentsov, and M. Grundmann, Quantum Dot Heterostructures 

(Wiley, 1999). 

[9] C.M. Lieber, MRS Bulletin 28, 486 (2003).  

[10] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les 

Editions de Physique, Les Ulis Cesex, 1988) 



 15 

[11] C. Yannouleas and U. Landman, Phys. Rev. Lett. 82, 5325 (1999); F. Troiani, H. 

Hohenester, and E. Molinari, Phys. Rev. B 65, 161301 (2002); G. Bester, J. Shumway, 

and A. Zunger, Phys. Rev. Lett. 93, 047401 (2004). 

[12] F. Remacle and R.D. Levine, J. Phys. Chem. B 105, 2153 (2001).  

[13] P.S. Demle, A.W. Ghosh, and S. Datta, Phys. Rev. B 64, 201403 (2001); M. Di 

Ventra, S.T. Pantelides, and N. Lang, Phys. Rev. Lett. 84, 979 (2000). 

[14] T. Mokari, E. Rothenberg, I. Popov, R. Costi, and U. Banin, Science 304, 1787 

(2004). 

[15] A. Ferretti, A. Calzolari, R. Di Felice, F. Manghi, M.J. Caldas, M. Buongiorno 

Nardelli, and E. Molinari, Phys. Rev. Lett. 94, 116802 (2005). 

[16] L.E. Brus, J. Chem. Phys. 79, 5566 (1983).  

[17] Al.L. Efros and M. Rosen, Annual Review of Materials Science 30, 475 (2000). 

[18] H. Jiang and J. Singh, Appl. Phys. Lett. 71, 3239 (1997); H. Fu, L.W. Wang, and 

A. Zunger, Phys. Rev. B 57, 9971 (1998). 

[19] A. Zunger, Phys. Stat. Sol. A 190, 467 (2002). 

[20] F. Pederiva, C.J. Umrigar, and E. Lipparini, Phys. Rev. B 62, 8120 (2000); J. 

Shumway, A. Franceschetti, and A. Zunger, Phys. Rev. B 63, 155316 (2001). 

[21] O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999). 

[22] P. Hawrylak and M. Korkusinski, Topics in Applied Physics 90, 25 (2003). 

[23] C. Delerue, M. Lannoo, and G. Allan, Phys. Stat. Sol. B 227, 115 (2001). 

[24] L. W. Wang and A. Zunger, J. Chem. Phys. 100, 2394 (1994). 



 16 

[25] S. Lee, J. Kim, L. Jonsson, J.W. Wilkins, G.W. Bryant, and G. Klimeck, Phys. 

Rev. B 66, 235307 (2002). 

[26] A. Franceschetti, H. Fu, L.W. Wang, and A. Zunger, Phys. Rev. B 60, 1819 

(1999). 

[27] M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 80, 3320 (1998). 

[28] A.J. Williamson, J. Grossman, R.Q. Hoods, A. Puzder, and G. Galli, Phys. Rev. 

Lett. 89, 196803 (2002). 

[29] L.W. Wang, Phys. Rev. Lett. 88, 256402 (2002). 

[30] L.W. Wang and J. Li, Phys. Rev. B 69, 153302 (2004).  

[31] S.H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).  

[32] X. Cartoixa and L.W. Wang, Phys. Rev. Lett. 94, 236804 (2005). 

[33] L. He, G. Bester, and A. Zunger, cond-mat/0503492. 



 17 

Figure captions 

 

FIG.1 (color) Schematic diagram of the energy levels and wave functions of (a) wide-

wire and (b) narrow-wire nano dumbbells, where coupling between the dots and the wire 

is neglected. The black solid lines show the conduction-band and valence-band offsets of 

bulk CdTe and CdSe. The levels hD1 and hD2 are the VBM states of the two dots. The 

levels eD1, eD2 and eW are the CBM states of the dots an the wire, respectively. In the case 

of (a) a wide wire, the hole wave functions are localized on the dots, while the electron 

wave function is localized on the wire. In the opposite case of (b) a wide wire, both 

electron and hole wave functions are localized on the dots. 

FIG.3 (color) Calculated single-particles energies and wave functions of the three nano-

dumbbells considered in this work. For each wire size, we show the atomistic wave 

functions of the topmost valence state (ψvbm) and the first three conduction-band states 

(ψ1, ψ2, and ψ3). Also shown are the single-particle energies (in meV), measured with 

respect to the CBM (ε1 = 0). 

FIG. 4 (color) Schematic diagram of the single-particle levels of the isolated building 

blocks (wire and dots) and of the coupled (wire+dots) system. Wire states are shown in 

blue, dot states in red. 

FIG.5 (color) Energy levels (in meV) of two electrons in a wide-wire nano dumbbell (RW 

= 15 Å). The correlation function in the uncorrelated (single-particle) and correlated (full 

CI) cases is shown at the bottom of the figure. The correlation function gives the 
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probability of finding one electron in different regions of the dumbbells (yellow cloud), 

when the other electron is kept fixed at the position of the blue circle. 

FIG.6 (color) Energy levels (in meV) of two electrons in a narrow-wire nano dumbbell 

(RW = 8 Å). The correlation function in the uncorrelated (single-particle) and correlated 

(full CI) cases is shown at the bottom of the figure. The correlation function gives the 

probability of finding one electron in different regions of the dumbbells (yellow cloud), 

when the other electron is kept fixed at the position of the blue circle. 

FIG.7 (color) Energy levels (in meV) of two electrons in an intermediate-wire  nano 

dumbbell (RW = 10 Å). The correlation function in the uncorrelated (single-particle) and 

correlated (full CI) cases is shown at the bottom of the figure. The correlation function 

gives the probability of finding one electron in different regions of the dumbbells (yellow 

cloud), when the other electron is kept fixed at the position of the blue circle. 
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Fig. 4

Ψ1 = D1+ D2+ W

Ψ1 = W

D1 - D2

D1+ D2

D1+ D2

D1 - D2

Ψ3 = W

D1 - D2

D1+ D2

W

Ψ2 = D1 - D2

Ψ3 = D1+ D2 - W

W

Ψ1 = D1+ D2

Ψ2 = D1 - D2

(a) Narrow CdSe wire
RW = 8 Å

(b) Intermediate CdSe wire
RW = 10 Å

Wire DotsBoth Wire DotsBoth

(c) Wide CdSe wire
RW = 15 Å

Wire DotsBoth

W

Ψ2 = D1+ D2

Ψ3 = D1 - D2

 



 22 

188 (x1)

|Ψ1Ψ1> : 0

186 (S)

(a) Single-particle
(b) Add 

Coulomb
(c) Add 

Exchange
(d) Add

Correlation

Wide-wire (RW = 15 Å) dumbbell      Two-electron states

Both electrons on wire

|Φ> = |Ψ1Ψ1>  
(~100%)

|Ψ1Ψ2> : 356 meV

Correlation function (ground state)

188 (S)

531 (x4)

499 (T) 499 (T)

563 (S) 563 (S)

Both electrons on wire

Uncorrelated Correlated

Fig. 5 

 

 

 



 23 

93 (x1)

|Ψ1Ψ1> : 0

147 (S)

39 (S)

(a) Single-particle (b) Add 
Coulomb

(c) Add 
Exchange

(d) Add
Correlation

Narrow-wire (RW = 8 Å) dumbbell       Two-electron states

Both electrons on both dots

|Φ> = 2-1/2 |Ψ1 Ψ1>
+ 2-1/2 |Ψ2 Ψ2>

|Ψ2Ψ2> : 2 meV

Correlation function (ground state)

93 (S)

95 (x1) 95 (S)

39 (T)

149 (S)

39 (T)

148 (S)

|Ψ1Ψ2> : 1 meV

One electron on each dot

Uncorrelated Correlated

Fig. 6  
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106 (x4)

150 (x1)

(a) Single-particle

83 (T)

(b) Add 
Coulomb

74 (S)

75 (T)

(c) Add 
Exchange

(d) Add
Correlation

Intermediate-wire (RW = 20 Å) dumbbell  Two-electron states

|Ψ1 Ψ1> : 0

|Ψ1 Ψ2> : 23 meV
|Ψ1 Ψ3> : 41 meV

|Ψ2 Ψ2> : 46 meV
|Φ> = 0.63 |Ψ1Ψ1>

+ 0.55 |Ψ1Ψ3> 
+ 0.55 |Ψ2Ψ2>

Correlation function (ground state)

|Ψ2 Ψ3> : 64 meV

160 (x4)

139 (x1)
129 (S)

139 (S)

116 (T)

104 (T) 102 (S)

151 (x4) 150 (S)

103 (T)

Electrons on wire Electrons mostly on dots

Uncorrelated Correlated

Fig. 7 


