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The ability of a quantum dot to confine photogenerated electron-hole pairs created interest in the behavior of
such an exciton in a “dot molecule,” being a possible register in quantum computing. When two quantum dots
are brought close together, the quantum state of the exciton may extend across both dots. The exciton wave
function in such a dot molecule may exhibit entanglement. Atomistic pseudopotential calculations of the wave
function for an electron-hole pair in a dot molecule made of two identical InxGa1−xAs/GaAs dots reveal that
the common assumption of single-particle wave functions forming bonding and antibonding states is errone-
ous. The true behavior of single-particle electrons and holes leads to symmetry-broken excitonic two-particle
wave functions, dramatically suppressing entanglement. We find that at large interdot separations, the exciton
states are built from heteronuclear single-particle states while at small interdot separations the exciton is
derived from heteronuclear hole states and homonuclear electron states. We calculate the entanglement of the
excitons and find a maximum value of 80% at an interdot separation of 8.5 nm and very small values for larger
and smaller distances.
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I. INTRODUCTION

A. Entanglement of an exciton in a molecule

Unlike its classical counterpart, aquantum bitsqubitd A
can exist not only in the two states “0” and “1,” but in a
linear combination of states:uCAl=au0Al+bu1Al in a two-
dimensional Hilbert space. Accordingly, a pair of qubitsA
and B can exist in a superposition of the four basis states
u0A0Bl, u0A1Bl, u1A0Bl, andu1A1Bl. The most important corre-
lated qubit states in quantum computation and quantum
information1–3 are the maximally entangledsBelld states
uCABl=s1/Î2dhu0A0Bl± u1A1Blj, which allow quantum algo-
rithms to outperform classical algorithms.1–3 Semiconductor
quantum dots confine electrons and holes in discrete energy
levels a few nanometers in size.4 These properties have
driven speculation that quantum dots may provide physical
realization of qubits. Proposed implementations using quan-
tum dots include the presence versus absence of an electron
in a certain dot level,5–7 the spin-up versus spin-down state
of an electron,1,8–10or the presence of an electron or a hole in
one dot versus another dot.11–14 An implementation of the
latter proposition has been made possible by the ability to
grow pairs of vertically coupled self-assembled quantum
dots with varying separations.15,16 This has offered the pos-
sibility of creating aregisterof two qubitsA andB in the two
basis states top dotsTd and bottom dotsBd. A relatively
simple proposal is to use as qubitA the electron and as qubit
B the hole of an electron-hole pairse-h, created by light
excitation11d where the two qubits can be in the states “top”
sTd and “bottom” sBd of the dot molecule. The so-defined
two qubits could form entangled as well as unentangled
states. One first considers thesingle-particle electron and
hole orbitalssanalogous to molecular orbitals in H2

+d which

form bonding and antibonding combinations:

fh
bonding=

1
Î2

shT + hBd, fh
anti =

1
Î2

shT − hBd,

fe
bonding=

1
Î2

seT + eBd, fe
anti =

1
Î2

seT − eBd, s1d

whereeT seBd represents an electron in the topsbottomd dot;
hT shBd represents a hole in the topsbottomd dot. When the
interparticle Coulomb interaction is introduced, these single-
particle states can form correlated excitons.Unentangledex-
citons form from simple direct products—e.g.,fe

bonding

^ fh
bonding= 1

2seThT+eBhB+eThB+eBhTd—and thus contain
terms due to ane-h pair in a single dot, as well as terms due
to an electron in one dot and a hole in another. In contrast,
the maximally entangledstates form from sums and differ-
ences of simple direct products containing eithere-h pair in
one dot or dissociated states, but not both11:

ual =
1
Î2

hueBhBl + ueThTlj, bound exciton, bonding,

udl =
1
Î2

hueBhBl − ueThTlj, bound exciton, antibonding,

ucl =
1
Î2

hueBhTl − ueThBlj, dissociated, antibonding,

ubl =
1
Î2

hueBhTl + ueThBlj, dissociated, bonding. s2d
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Bayeret al.11 and Korkusinskiet al.14 formulated simple
models for the energies of the four excitons starting from Eq.
s2d in a double dot and compared the predicted energies with
experiment. Experimentally, the emission spectra of a dot
molecule showed11,14 two exciton transitions separated by an
energyDE. This energyDE was shown to increase with de-
creasing interdot separation. This observation was in agree-
ment with the theory where the same behavior was obtained.
However, we will show that in this case the agreement be-
tween experiment and theory does not necessarily validate
the theoretical assumption. We offer here a fundamental
theory of dot molecules based on a fully atomistic approach.
Our results differ significantly from those of Bayeret al.11

and Korkusinskiet al.,14 in that we predict a reduced exciton
energy in a dot molecule relative to isolated dotssthe simple
models predict an enhanced energyd and that entanglement is
generally weaksthe simple models predict high entangle-
mentd. In what follows we first introduce simple models

which will serve to explain previous resultssSec. I Bd. Fol-
lowing this we will describe our fully atomistic results.

B. Simple models describing an exciton in a dot
molecule

Before displaying our method and results, we briefly de-
scribe the expectations from a simple model. This will serve
to describe the main assumption of Bayeret al.11 and Ko-
rkusinski et al.14 and clarify the basis of more general ap-
proaches.

In order to decide weather to expect unentangled or en-
tangled excitons in a system of two interacting quantum dots
one could attempt to use a two-site tight-binding Hamil-
tonian with intuitively chosen parameters. The basis for this
Hamiltonian can be constructed from products of the elec-
tron and hole single-particle statesueThTl, ueThBl, ueBhTl, and
ueBhBl. The two-site Hamiltonian in this basis is given by

H =1
«e

T − «h
T + Ueh

TT te th 0

te «e
B − «h

T + Ueh
BT 0 th

th 0 «e
T − «h

B + Ueh
TB te

0 th te «e
B − «h

B + Ueh
BB
2 , s3d

whereh«e
T,«e

B,«h
T,«h

Bj are the electron and hole on-site ener-
gies, hte,thj are the hopping matrix elements, and
hUeh

TT,Ueh
TB,Ueh

BT,Ueh
BBj are the electron-hole Coulomb matrix

elements. Different assumptions can be made here, leading to
two models.

1. Model 1: «h
T=«h

B, «e
T=«e

B, te= th, U=0

A simple trial assumption is to assumedsid that the two
dots T and B forming the molecule have identical on-site
single-particle energies«h

T=«h
B and «e

T=«e
B, sii d the hoping

matrix elements for electrons and holes are identical:te= th,
siii d the electron-hole Coulomb matrix elementsUeh are neg-
ligible. The single-particle electron and hole energy levels
for this case are schematically shown in Fig. 1sad where the
electron and hole levelse0, e1 andh0, h1 form bonding and
antibonding combinations as in Eq.s1d, so the energies split
symmetrically as a function of interdot separation. Theexci-
tonic electron-hole eigenvectors of the Hamiltonian in Eq.
s3d are given in order of increasing energy by

u1l =
1

2
hueThTl − ueBhTl − ueThBl + ueBhBlj,

u2l =
1
Î2

hueBhBl − ueThTlj,

u3l =
1
Î2

hueBhTl − ueThBlj,

u4l =
1

2
hueThTl + ueBhTl + ueThBl + ueBhBlj. s4d

Excitons u1l and u4l are symmetric and therefore optically
active sbrightd while u2l and u3l are energetically degenerate
and optically dark. If we further assume that the hopping
matrix elementste andth increase when the interdot distance
is reduced, we find the spectrum depicted in Fig. 2sad. The

FIG. 1. Single-particle energies assumed in models 1 and 2
fpanelsadg and results from our pseudopotential calculationsfpanel
sbdg. The reference energy for our results is set to the unstrained
valence-band maximum of GaAs.
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two bright statesu1l and u4l move energetically apart, where
the energy of stateu1l decreases by 2t while the energy and
stateu4l increases by 2t with decreasing interdot separation.
This qualitative behavior resembles the experimental
observation14,17 where two peaks move apart and one could
be tempted to fit the hopping parameterst= te= th to the ex-
perimental splitting of the bright states. We will show later
that this model is in strong disagreement with the underlying
physics.

2. Model 2: «h
T=«h

B, «e
T=«e

B, te= th, UÅ0

A slightly more realistic model, similar to the one pre-
sented in Refs. 11 and 14, uses a different assumption for
siii d, taking Coulomb attraction into account. Here the
electron-hole Coulomb energiesUeh

TT=Ueh
BB for the exciton

states, where both the electron and hole reside on the same
dot, are assumed to be larger than the Coulomb elements of
the dissociated exciton Ueh

TB=Ueh
BT, where the electron and

hole are located on different dots. SettingUeh
TT=Ueh

BB=U and
Ueh

TB=Ueh
BT=0 in the Hamiltonian from Eq.s3d yields in in-

creasing order of energy the four exciton statesu1l, u2l, u3l,
and u4l:

u1l =
1

Î2s1 + g1
2d

hueThTl + ueBhBl − g1sueBhTl + ueThBldj,

u2l =
1
Î2

hueBhBl − ueThTlj,

u3l =
1
Î2

hueBhTl − ueThBlj,

u4l =
1

Î2s1 + g2
2d

hueThTl + ueBhBl − g2sueBhTl + ueThBldj,

s5d

with

g1 =
U + Îs4td2 + U2

4t
, g2 =

U − Îs4td2 + U2

4t
. s6d

Their eigenvalues are given by

E1 = «e − «h +
1

2
U −

1

2
Îs4td2 + U2,

E2 = «e − «h − U,

E3 = «e − «h,

E4 = «e − «h +
1

2
U +

1

2
Îs4td2 + U2. s7d

We obtain two antisymmetricsdarkd statesu2l and u3l that
are fully entangledsBelld states. The statesu1l andu4l cannot
be written as simple direct products and are, to some degree,
entangled. The limiting case of vanishing CoulombsU→0d
interaction gives, as expected from model 1, the statesu1l,
u2l, u3l, and u4l from Eq. s4d where u1l and u4l are unen-
tangled. The case for nonzero but small hopping elements
st→0d gives for u1l, u2l, u3l, and u4l the eigenstatesubl, udl,
ucl, and ual, respectively, from Eqs.s2d which are all fully
entangled states. The statesu1l and u4l are bright whileu2l
andu3l are dark. An increasing value oft introduces a mixing
between the statesu1l and u4l; these states change character
and have presumably lower entanglement, while the states
u2l and u3l remain dark and fully entangled. The energetic
evolution of the statesu1l, u2l, u3l, and u4l with decreasing
interdot separation is given in Fig. 2sbd. The energy separa-
tion between the two bright statesu1l and u4l is DE
=Îs4td2+U2. At large interdot separation,u1l and u3l as well
as u2l and u4l are energetically degenerate. Both doublets are
separated byU. The excitonic wave functionsu1l, u2l, u3l,
andu4l are illustrated schematically on the right-hand side of
Fig. 3 for large interdot separationslarge-d cased and small
interdot separationssmall-d cased. Again, the result of two
bright statesu1l and u4l moving energetically apart with de-
creasing interatomic distance is in agreement with experi-
ment, spurring hope that the theoretically predicted high de-
gree of entanglement in this system could be experimentally
realized11,14 to the benefit of quantum computing.

However, there are reasons to doubt the validity of the
simple diatomiclike analog of dot molecules, since actual
self-assembled quantum dots contain tens of thousands of
atoms and the dots themselves are strained by the host matrix
and submitted to random alloy fluctuations. Indeed, the elec-
tronic properties of such dots depend on their shape, size,
composition profile, and strain profile18 and cannot,19 for in-

FIG. 2. sColor onlined Exciton energies as a function of the
interdot separation for two different modelssmodels 1 and 2d and
for our pseudopotential-CI resultssactual resultsd. The circles on the
excitonic lines of the lower panel are proportional to the oscillator
strength of the transitions.
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stance, be modeled by simple single-band effective-mass
models. Furthermore, the assumptionte= th is very question-
able given the large mass ratiome/mhh<0.06/0.40<1/6 of
electrons and heavy holes in the GaAs barrier between the
dots. Indeed, coupling between a larger number of bands
than afforded by simplistic models, and consideration of the
strain field between the dots could prevent effective tunnel-
ing of either electrons or holes. Thus, a more complete the-
oretical treatment is called for.

In the present work we study entanglement in dot mol-
ecules, using the pseudopotential many-body approach,
previously18,20,21 applied to successfully study many elec-
tronic and optical properties of single dots. We consider mol-
ecules made of two vertically stacked lens-shaped
InGaAs/GaAs dots of identical shape, size, and composition
with varying interdot distances. Thesingle-particleproblem
is solved within a multiband, multivalley pseudopotential
plane-wave method,22 including the effects of strain and
spin-orbit. The many-body problem is solved via a
configuration-interaction expansion within the basis of
pseudopotential single-particle states. We find that the mo-
lecular description of Eq.s1d and Fig. 1sad breaks down al-
ready for the single-particle hole states, which are localized
on one of the two dots, not forming bonding-antibonding
combinations as in Eq.s1d. This reflects the fact that the
actual potential experienced by holesin between the dotsis
repulsive for its heavy-hole component, and this repulsion is
reinforced when the dots are brought together, preventing
effective interdot tunneling. This is different from the poten-
tial within a real diatomic molecule, which is attractive ev-
erywhere, with reinforced attraction when the atoms are
brought together. Thus, “artificial dot molecules” behave dif-
ferently from real molecules, in that the single-particle mo-
lecular orbitals demonstrate broken symmetry, akin to het-
eronuclear moleculesse.g., HFd, not homonuclear molecules
sH2d. This single-particle symmetry-breaking effects in real
dot molecules affects their many-particle excitonic states,
which now differ from the maximally entangled model states
in Eqs. s4d and s2d, exhibiting insteadsueBhBl+ ueThBld-like
behavior with a low degree of entanglement. By varying the
interdot separation we predict the many-particle optical spec-

trum and identify the interdot separation that has the highest
degree of entanglement. This establishes an important link
between quantum entanglement and the molecular geometry.

II. METHOD

A. Calculation of exciton states

The method of calculation involves two separate steps. In
the first step we solve the single-particle Schrödinger equa-
tion for a superposition of strain-dependent atomic pseudo-
potentialsoaonvasr −Rnd. These potentials are centered at
the relaxed atom positionsRn which are determined using
the valence force field method.23 The atomic pseudopoten-
tials va include spin-orbit effects and are fit to InAs and
GaAs bulk properties.24 The single-particle dot molecule
wave functionscsr d for the CBM electron orbital and level
and the VBM hole orbital and level are expanded in terms of
strain-dependent Bloch functionsfn,ksr d:

csrd = o
n

NB

o
k

Nk

Ck,nfk,nsrd, s8d

where

fk,nsrd =
1

ÎN
uk,nsrdeik·r , s9d

with band indexn and wave vectork of the underlying bulk
solids; the number of primary cells,N; the number ofk
points,Nk; and the number of bands,NB f“strain-dependent
linear combination of bulk bands”sSLCBBd sRef. 22dg.

In the second step we follow the configuration interaction
sCId method and construct a set of Slater determinants.21:

uFhi,ej
l = bhi

† cej

† uF0l, s10d

wherebhi

† is the creation operator for holes andcej

† the cre-
ation operator for electrons. The Slater determinantsuFhi,ej

l
can be calculated from antisymmetrized products of single-
particle wave functionsci sRef. 25d.

The exciton wave functionsuCl are expanded in terms of
this determinental basis set:

uCl = o
hi,ej

Ashi,ejduFhi,ej
l. s11d

The matrix elements of the many-body Hamiltonian involves
the calculation of the two center integrals for particlea and
particleb:

kci
ac j

buÛuc j8
b ci8

a l =E E ci
!sradc j

!srbdc j8srbdci8srad

esra,rbdura − rbu
dradrb.

s12d

The dielectric functione is calculated using the model of
Resta.26

The shape and size for our dot molecule are inspired from
the experimental studies of Bayeret al.11 The dots have a
truncated cone shape with 12 nmsbottomd and 10 nmstopd
bases and 2 nm height. The composition profile is linear,

FIG. 3. Schematic representation of the excitonic wave func-
tions obtained from our pseudopotential CI calculationssleftd and in
the simple model presented in the introductionsrightd. The symbols
are1 sholed, 2 selectrond, or 6 sexcitond. The two spheres denote
top and bottom dots. The value of the critical distance is 8.5 nm for
our specific case.
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starting from In0.5Ga0.5As at the base, to pure InAs at the top
of the dots. Both dots have one monolayer wetting layer. The
separation between the dots is given as the base-to-base
separationd.

B. Method of analysis

The single-particle states can be analyzed by a projection
onto valence- and conduction-band states of the bulk at theG
point:

csrd =
1

ÎN
o
n

NB

o
k

Nk

Ck,n8 fuG,nsrdeik·rg ; o
n

NB

fnsrduG,nsrd,

s13d

with fnsrd being the envelope functions and

Ck,n8 = o
n8

Ck,n8kuG,nuuk,n8l. s14d

Once this projection is available we classify the states ac-
cording to the axial angular momentumJz of the Bloch func-
tions. We choose this classification because the eigenfunction
analysis in terms of the heavy-hole, light-hole, and split-off
charactersaccording toJ and Jzd is not adequate for struc-
tures withC2v symmetry, like the dot molecule, sinceJ is not
a good quantum number. For the forthcoming analysis we
only consider contributions in Eq.s13d from the first conduc-
tion band and the topmost three valence bands, soNB equals
eight stwo conduction bands and six valence bandsd. The six
valence-band contributions are divided into twoJz=3/2
states, which are exactly equivalent to the heavy-hole states,
and fourJz=1/2 states. The fourJz=1/2 states are further
split into states withuxl, uyl valence-band character and states
with uzl valence-band character. We define

Jsxyd for
uxl − i uyl

Î2
↑,

uxl + i uyl
Î2

↓,

Jszd for uzl↑, uzl↓. s15d

This is a meaningful classification for the calculated struc-
tures where thez sf001gd direction is the growth direction.

Each envelope functionfn can be further expanded in
terms of the axial angular momentum

fnsx,y,zd = o
m

fn
msr,zdexpsimfd/Î2p, s16d

and the axial expansion coefficients are defined as the norm
of fn

m given by

an
smd =

1

2p
E UE fnsx,y,zdexps− imfddfU2

rdrdz. s17d

For each single-particle wave functionCsrd, the axial expan-
sion coefficientsan

smd give the weight of the state according to
its Bloch function characterfheavy hole,Jsxyd, Jszd, conduc-
tion band, indexed byng and according to its axial angular
momentum charactersS, P, D, etc., indexed bymd.

Starting from the correlated excitonic wave functions the
degree of entanglement can be calculated following the defi-

nition of von Neumann. For the qubitsA or B the entropy of
entanglementS sRefs. 2 and 3d is given by

SsCd = − Tr rA log2rA = − Tr rB log2rB, s18d

where rA is the reduced density matrix for qubit “A” sthe
electrond andrB is the reduced density matrix for qubit “B”
sthe holed. The density matrices are calculated from the cor-
related CI exciton densityr,

r = uClkCu = o
hi,ej,hk,el

Ashi,ejdA*shk,elduFhi,ej
lkFhk,el

u

s19d

= o
hi,ej,hk,el

rhiejhkel
, s20d

where Ashi ,ejd are the CI expansion coefficientsfsee Eq.
s11dg. rA is obtained by tracing over all but one pair of indi-
ces:

rA = rejel
= o

hi,hk

rhiejhkel
. s21d

For the maximally entangled stateSsCd=1, while SsCd=0
for a nonentangled state.

The correlated excitonic wave functions can also be ana-
lyzed in terms of the probabilities to find the electron or the

hole in the top or in the bottom dot. A mask operatorM̂,
which selects a certain region of spacese.g., the top of bot-
tom dotd, can be applied to the single-particle electron or
hole wave functions:

r̃eiej

T/B = kcei
uM̂T/Bucej

l. s22d

The excitonic density can then be written as a sum of
weighted products of these projected densities:

r̃eiej

T
^ r̃hihj

T , r̃eiej

T
^ r̃hihj

B , s23d

r̃eiej

B
^ r̃hihj

T , r̃eiej

B
^ r̃hihj

B . s24d

From these densities, the four probabilities to find the elec-
tron and hole in the top or bottom dot can be calculated.

C. Strain-modified band-offset calculations

To appreciate the effect of strain on the hole states we
perform strain-modified band-offset calculations. From the
relaxed atomic positions—obtained using the valence force
field sVFFd method—the strain field can be calculated for
each atom from the deformation of its tetrahedron of nearest
neighbors. The strain-modified band-offset Hamiltonian de-
pends on the six irreducible components of the strain tensor,
the three deformation potentialsshydrostatic and two
uniaxiald, and the spin-orbit splitting.27 For the unstrained
bulk its eigenvectors are the heavy-hole, light-hole, and split-
off bands, while strain induces mixing of these three bands.
The corresponding eigenstates were analyzed by giving to
each solution a weight according to their character: heavy
hole,Jsxyd, andJszd fsee Eq.s15dg.
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III. RESULTS FOR THE SINGLE-PARTICLE STATES

A. Largely separated dots„d\`…

Figure 1sbd shows the single-particle electron and hole
energies as a function of interdot separation. For large inter-
dot separations the single-particle hole statesh0 and h1 are
energetically almost degenerate. Figures 4 and 5 show the
electron and hole wave functions as a function of the interdot
separationd. In these figures, the envelope functionsfn fsee
Eq. s13dg averaged over eight atom cells are plotted. The
physical shape of the dotstruncated conesd is shown in grey,
whereas the wave functions are depicted as two isosurfaces
with two shades of color enclosing 75% and 40% of the state
density. The hole statesh0 andh1 are localized on the bottom
and top dots, respectivelysFig. 5d. This behavior resembles
H2

+ with very long bond length where the orbitals are local-
ized at a single atom, rather than forming a resonance.

For the single-particle electron statese0 ande1 the wave
functionssFig. 4d are mainly localized on the top and bottom
dots, respectively. The energy splitting between these states
fFig. 1sbdg reflects the effect of alloy fluctuations, fully taken
into account in our calculations, which make both dots some-
what dissimilar even ifd→`. These local fluctuations result

in a lifting of the degeneracy by 3.1 meV fore0 ande1 and
0.2 meV forh0 andh1 senergy values taken from our largest
interdot distance of 22.6 nmd. Thus, for large interdot sepa-
rations, a diatomic dot made of truncated-cone shaped con-
stituents is not equivalent to a homonuclear diatomic mol-
eculesD2` symmetry like H2d, but rather to a heteronuclear
moleculesD2d symmetry like HFd. Figures 6sad and 6sbd give
the qualitative picture where for the electron and the hole the
“molecular” single- particle orbitalssMO’sd are constructed
like for a heteronuclear molecule; i.e., the characters of the
MO’s are dominated by one of the single-particle states. This
is justified by the fact that, at large and intermediatesi.e., for
distances larger than 8 nmd interdot separations, the hopping
matrix element for holesth is negligible while the one for
electronste is smallsthis will be shown quantitatively in Sec.
Vd compared to the “polarization energy” of the molecule,Vp
s2Vp.e0−e1=3.1 meV ford→`d.

B. Closely spaced dots

We see in Fig. 4 that the electron statese0 and e1 form
bonding-antibonding pairs as suggested by Eq.s1d, whereas
the hole statesh0 and h1 sFig. 5d do not, forming instead

FIG. 4. sColor onlined Square of the single-
particle electron wave functionse0 ande1 for dif-
ferent interdot separations. The shape of the dots
is given in light grey and the two isosurfaces with
two different tones of dark graysred onlined con-
tain 75% and 40% of the state densities.

FIG. 5. sColor onlined Square of the single-
particle hole wave functionsh0, h1, h2, h3, h4 and
h5, for different interdot separations. The shape of
the dot is given in light grey and the two isosur-
faces with two different tones of dark graysblue
onlined contain 75% and 40% of the state
densities.
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symmetry-brokensheteronuclearliked states. Figures 6scd and
6sdd show this hybrid behavior where electrons form
symmetric-antisymmetric combinations of MO’s, akin to a
homonuclear dimer, while holes give rise to heteronuclear
MO’s localized on one or the other dot. There are two rea-
sons for this behavior, explained in the following two para-
graphs.

1. Hole states experience a high barrier that suppresses interdot
tunneling

The first reason for the broken-symmetry hole behavior is
the high barrier between the two dots experienced by the
heavy-hole componentsdominantd of the hole states. To ap-
preciate these facts we performed strained modified band off-
sets calculationssSec. II Cd for different interdot separations.
Figure 7 shows the results for the first two hole confining
potentials for three different interdot separations. The char-
acterfheavy hole,Jsxyd, andJszdg of each eigenstate is rep-
resented by a certain symbol of size proportional to the
weight of the character. The heavy-hole confining potential is
the relevant quantity for the energetics of the hole states
since hole states are to over 80% heavy hole like. Examina-
tion of the heavy-hole confining potentialscircles in Fig. 7d
reveals that the potential isnegative in the region of the
barrier, strongly repelling heavy holes. This high barrier was
also reported28 for pure InAs truncated-pyramid dots. Fur-
thermore, the effective barrier felt by the hole states in-
creases upon reduction of the interdot separation, suppress-
ing tunneling and the ability for holes to form bonding-
antibonding states. Figure 1sbd also shows that the hole states
move to lower energy when the interdot separation is re-
duced, in agreement with the increasing barrier height be-
tween the dots.

2. Due to the lack of inversion symmetry between the dots,
the bottom dot is more favorable for holes

The lack of inversion symmetry between nonspherical
se.g., lens-shapedd dots leads to heteronuclear hole states.
This can be seen in the top panel of Fig. 7 where indeed the
confinement potential experienced at the base of thetop dot
is different than that experienced at the base of thebottom
dot. Figure 1sbd shows that the hole statesh0 andh1, which
are energetically almost degenerate at large interdot separa-
tion, split when the distance is reduced, showing an increas-
ing preference for holes to be in the bottom dot with dimin-
ishing interdot separation. This can be understood using a

simple strain picture like given in Fig. 8. A single truncated-
cone or truncated-pyramid dot with homogeneous composi-
tion is nearly unstrained on the apex while it is stained at the
base. The top right panels of Fig. 8 show a cubical unit cell
for the unstrained case and an elongated parallelepiped for
the case of biaxial strain. The heavy holes prefer the highly
strained region near the base and localize preferentially in

FIG. 6. Formation of single-particle “molecu-
lar orbitals” sMO’sd fin the central part of panels
sad, sbd, scd, sddg from the single-particle “atomic
orbitals” fon the left and right sides of panelssad,
sbd, scd, sddg. For large interdot separation the
electrons and the hole form heteronuclearlike
MO’s. For small separation the electrons form
bonding-antibonding combinations like homo-
nuclear MO’s.

FIG. 7. Strain-modified confining potential for holes along the
growth directions001d sgiven in the inset of the top paneld for three
dot molecules with a base-to-base separations of 5.1, 11.3, and
22.6 nm. Each data point is an average over the results obtained in
the thes001d plane. The size of the circles is proportional to the
weight of the heavy-hole contributions; the sizes of the triangles
pointing upwardfdownwardg are proportional to the weight of the
Jsxyd fJszdg contributions.
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this region as suggested by the strained bulk band structure
given on the right side of Fig. 8. When two dots are close
together the strain at the top but also at the base of the upper
dot is almost hydrostatic due to the compression of the dot
through the sandwiched material. The base of the lower dot,
however, experiences biaxial strain and remains favorable
for heavy holes. The magnitude of this effect should be
stronger for pure InAs dots since it experiences more strain
than our alloyed InGaAs dot. With a very strong preference
for hole states to localize on the bottom dot, not only the first
slike on our cased, but the first few hole states might local-
ized on the bottom dot. This expected behavior has been
reported by Sheng and Leburton28 performing eight band
k ·p calculations of a pure InAs truncated-pyramid dot mol-
ecule where the first two single-particle hole states are local-
ized on the bottom dot. Such a localization might have det-
rimental consequences for the achievement of entanglement.

3. Component of the hole wave function responsible for the hole
tunneling has P symmetry

Figure 7 shows how theJszd confinement potentialstri-
angles pointing downwardsd becomes attractive between the
dots at small interdot separation. The effect of this attractive
potential on the hole stateh0 is shown in Fig. 9, where the
single-particle hole stateh0 of our pseudopotential calcula-
tion is decomposed according to its Bloch—and envelope
function—character fsee Eq. s17dg. Only the main
contributions—the symmetric heavy-hole state with pureS
envelope function and the antisymmetricJszd state with pure
P envelope function—are shown. Figure 9 shows that when
the interdot distance is reduced, the heavy-hole character di-

minishes while theJszd character increases. This is in agree-
ment with the qualitative picture given by the strained-
modified band-offset calculation where theJszd confining
potential becomes attractive between the dots at small inter-
dot separation. The part of thesmultibandd wave function
responsible for the hole tunneling is therefore antisymmetric
P like with Bloch function characterJszd. This will have
consequences on the optical properties described in Sec. IV
showing a dark exciton state below the bright exciton state.
We underline at this point that the proper treatment of hole
tunneling sand therefore of all optical properties and en-
tanglementd requires a multiband treatment like eight-band
k ·p,28 tight-binding,29 or our pseudopotential approach and
cannot be accounted for by single-band effective-mass
approaches.30,31

IV. RESULTS FOR THE MANY-PARTICLE EXCITON
STATES AND THE OPTICAL SPECTRUM

The energies of the four lowest exciton states formed
from the single-particle states above are shown in Fig. 2scd
where the dot size is proportional to the oscillator strength.
To characterize the excitonic wave functions we have calcu-
lated the probability to find both particles in the top dot
seThTd, both particles in the bottom dotseBhBd, and the par-
ticles in different dotsseBhT, eThBd for each excitonic wave
function. The results are given for the first four excitons in
the top four panels of Fig. 10. Different symbols have been
used for different occupations. The integration in Eq.s22d is
performed over the volume abovestop dotd and belowsbot-
tom dotd the equidistant plane between both dots. We next
discuss the salient features of the exciton energies and the
optical spectrum.

FIG. 8. Qualitative picture of the strain in a truncated-cone and
in a truncated-cone molecule. The deformation of the unit cell at the
base and the apex of the dot is schematically given with the corre-
sponding strained bulk band structure. The base of the single dot
and the base of thebottomdot sfor the dot moleculed is shown to be
more favorable for heavy holes.

FIG. 9. Analysis of the first hole stateh0 in terms of the axial
angular momentumJz ssee textd and the orbital character of the
envelope functions as a function of the interdot separation. Only the
heavy-hole contributions with orbitalS character andJszd with or-
bital P character are shown.
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A. Largely separated dots

Figure 10 shows that the excitonsu1l andu2l are localized
on the top and bottom dots, respectively. The statesu3l and
u4l are dissociated excitons where the electron and hole are
localized on different dots. The excitons are therefore simple

products of the single-particle molecular orbitals given in
Figs. 6sad and 6sbd: ueThBl, ueThTl, ueBhBl, and ueBhTl. The
on-site electron-hole Coulomb attractionU lowers the energy
of the ueThTl and ueBhBl excitons, leading to the energetic
order given in Fig. 3:ueThTl, ueBhBl, ueThBl, and ueBhTl. The
ueThTl / ueBhBl excitons are separated fromueThBl / ueBhTl by
the on-site Coulomb attraction whileueBhBl is separated from
ueThTl sand ueThBl from ueBhTld by the polarization energy
2Vp. An interesting effect is already revealed at this point:
although the material propertiesscomposition, shape, sized of
both dots are identical, their exciton energies are different, as
can be seen from the existence of two optically active lines
in the spectrum of Fig. 2scd for large interdot separation.
Naturally, if the two dots would have different sizes or com-
positions, as is often the case during growth, even greater dot
inequivalence will ensue.

B. Merging of the excitons z1‹ and z2‹: A many-body effect

Figure 11 shows in more detail the calculated spectrum of
the fist two excitonsu1l and u2l as a function of the interdot
distance. When the interdot distance is reduced from
17 nm to 8.5 nm both excitonic peaks move to higher energy
and move closer together until only one exciton peak is ob-
served atd=8.5 nm. The diminishing energy difference be-
tweenu1l andu2l is an excitonic effect. To appreciate this fact
we plotted in Fig. 12 the electron-hole single-particle ener-
gies: uTTl=e0−h1, uBBl=e1−h0, uBTl=e1−h1, and uTBl
=e0−h0. At large interdot separation where the excitonsu1l,
u2l, u3l, and u4l sincluding two-body effectsd are almost pure
ueThTl, ueBhBl, ueThBl, and ueBhTl the comparison between
uTTl, uBBl, uBTl, and uTBl sFig. 12d and u1l, u2l, u3l, and u4l
fFig. 2scdg is meaningful.uTTl anduBBl move apart whileu1l
and u2l move together whend is reduced, showing the exci-
tonic nature of the latter effect which can be understood as
follows: At the single-particle level we saw in Sec. III B that
the increasingly repulsive barrier for the heavy holes with
decreasing interdot separation lowers the single-particle hole

FIG. 10. Upper panels: localization of the first four exciton
states numbered with increasing energy asu1l, u2l, u3l, u4l, as a
function of the interdot distance. On each panel, four lines describe
the occupation probability to find the electron and the hole both on
the bottom dotseBhBd, both on the top dotseThTd, the electron on
the top and the hole on the bottomseThBd, and the electron on the
bottom and hole on the top dotseBhTd. Lower panel: entropy of
entanglement as a function of the base-to-base dot separation.

FIG. 11. Excitonic spectrum for the first two exciton statesu1l
and u2l as a function of the interdot separationd.
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energiesfFig. 1sbdg. This destabilization goes along with de-
localization of these states. With decreasing interdot dis-
tance, the single-particle electron statee0 becomes delocal-
ized as well, but for another reason: it creates a bonding state
with increased occupation probability between the dotssFig.
4d. Both the delocalization of the electron statee0 and the
delocalization of the hole statesh0 andh1 contribute to lower
thee-h Coulomb attractionsUeh

TT andUeh
BB. The delocalization

of the excited hole stateh1 slocalized on topd is stronger than
the delocalization ofh0. The magnitude ofUeh

TT is therefore
reduced more severely thanUeh

BB with decreasingd. This shift
is an excitonic effect which is missed by theories restricted to
the single-particle level.28,32

C. Anticrossing of z1‹ and z2‹ at dc: Bonding-antibonding
exciton splitting

At the critical distancedc the energy difference between
u1l.ueThTl and u2l.ueBhBl is very small, allowing them to
form bonding and antibonding excitonsueThTl+ ueBhBl and
ueThTl− ueBhBl as shown in the “criticald” column of Fig. 3.
The energy difference between these excitons is 0.4 meV
and is conceptionally very similar to the Davydov splitting33

observed in molecular crystals. Since the excitonsueThTl and
ueBhBl are highly symmetric, their bonding and antibonding
combinations should yield highly symmetric and antisym-
metric excitons with strong entanglement. A quantitative
analysis of the entanglement will be given subsequently. In-
terestingly the antibonding combinationsoptically darkd is
energetically below the bonding combinationsoptically
brightd. This is due to the fact that the single-particle hole
states do not form ansss bond, like the electron, but a weak
pps bond34 swhich will lead to a negative hopping parameter
th in Sec. Vd as described in Sec. III B 3. From a molecular
point of view this situation is unexpected since dimers with
electric dipoles of the excitons align “head to tail” show a

bight state below the dark state. In our solid state analogous,
the two “molecules” are coupled via strain and yield the
unexpected “head-to-head” alignment typical of dark states
below bright states in dimers.

D. Closely spaced dots: Forbidden transitions become allowed

The mixed heteronuclear and homonuclear behavior of
holes and electrons, as given in Figs. 6scd and 6sdd, gives rise
to excitonic states that are combinations of single-dot local-
ized excitons sueThTl , ueBhBld and dissociated excitons
sueThBl , ueBhTld sFig. 10d. These combinations are given in
Fig. 3 where electrons are obviously building bonding-
antibonding states and holes remain top or bottom localized.
At small d all the excitons are neither symmetric nor anti-
symmetric and all are, to some extent, bright. This can be
seen in Fig. 2scd where the statesu3l and u4l start to gain
some oscillator strength as marked by the small dots visible
for base-to-base separations smaller than 8 nm. These states
were optically inactivesdarkd at large interdot separation
since electrons and holes were located on different dots
forming purely dissociated statesssee Figs. 10 and 3d.

E. Degree of entanglement as a function of distance

The calculated degree of entanglement is given in the
lower panel of Fig. 10. We see that it reaches the maximum
value of 0.8 for a distance ofdc=8.5 nm and decays strongly
for larger or shorter distances. From this result it is obvious
that a judicious choice of interdot separation is crucial for
quantum computation applications. Especially the fact that
small distances show unentangled states is surprising. En-
tanglement is a result of a fine balance between the energetic
of the two dots and the electron and hole interdot coupling.
Both of these quantities depend on the interdot separation as
well as from the material properties of the dot. Simple mod-
els which assume a high-symmetry Hamiltonian like the
theories presented in the Introduction or introduced in Refs.
11–14 naturally yield maximally entangled wave functions.
The calculation as well as the measurement of the entangle-
ment requires the treatment of atomistic effectssalloy fluc-
tuationd, strain, and correlations.

F. Exciton dissociation energy

The energy difference between statesu1l and u2l selectron
and hole on one dotd and u3l and u4l selectron and hole on
different dotsd is the exciton dissociation energy.35,36 Figure
2scd shows that our calculated dissociation energy is
,20 meV, and it reaches its minimum value atd=8.5 nm.
The value of 20 meV is considerably smaller than what was
found in colloidal CdSe dotss150–300 meVd,35,36 and sug-
gests that photoconductivity has a low activation energy in
self-assembled dot molecules.

G. Theoretical vs experimental spectra

In the recent experiments of Somintacet al.37 and Heet
al.38 a blueshift of the photoluminescencesPLd has been ob-
served with decreasing interdot distance, in agreement with

FIG. 12. Differences between single-particle electron and hole
energies: uTTl=e0−h1, uBBl=e1−h0, uBTl=e1−h1, and uTBl=e0

−h0. The denominationuTTl, uBBl, uTBl, and uBTl, whereT stands
for top andB for bottom, is only meaningful outside the shaded
area, for large interdot separations, since the single-particle electron
states at short base-to-base separations are neither top nor bottom.
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our results. Earlier, Miglioratoet al.39 reported a redshift of
the ensemble PL for stacks of vertically aligned quantum
dots. Our predicted blueshift only applies to quantum dots
separated by enough buffer material to still be distinct enti-
ties. The limiting case of a base-to-base separation equal to
the dot height naturally yields a redshift typical of the for-
mation of one single larger quantum dot. The theoretical re-
sults for the magnitude of the splitting of the bright statesu2l
and u3l in Fig. 2scd are in good agreement with the
experiments.11–14 The agreement is even better if a system-
atic error of 1 nm between the interdot separation given in
the experiments and the calculated base-to-base separation is
assumed. We then compare the theoretical results: 42.1, 32.8,
24.8, and 16.8 meVsfor the separations 5.1, 5.7, 6.8, and
7.9 nmd with the experimental 42, 30, 17, and 12 meVsfor
the separations 6, 7, 8, and 9d.11–14 However, unlike what is
reported in the experiment, we find that the bright states are
split which leads to four allowed excitons. In the case of our
calculation, the appearance of four states is due to the ran-
dom alloy fluctuations and the strain which affects the elec-
tronic properties of both dots and make them dissimilar. In
the experiment we would expect the dots to be even more
dissimilar, since the growth conditions for the top and bot-
tom dots are different, and four peaks at short interdot dis-
tance should be observed. It is, however, conceivable to ob-
serve only two peaks at small interdot separation and one
peak at large interdot separation when both dots have the
same excitonic ground-state energy. This is expected to be
the exception rather than the rule but might have been the
case in Refs. 11, 13, and 14.

V. DISTANCE-DEPENDED TIGHT-BINDING FIT

The pseudopotential CI results can be fitted to the
tight-binding parameters of Eq.s3d and yield the on-site
matrix elementsh«e

T,«e
B,«h

T,«h
Bj, the hopping parameters

hte,thj, and the electron-hole Coulomb matrix elements
hUeh

TT,Ueh
TB,Ueh

BT,Ueh
BBj presented in Fig. 13. The analytic ex-

pressions for the distant-dependent parameters are given in
Table I. We note several physical observations:sid The on-
site energies for the top and bottom dots are different, espe-
cially for holes. The difference«e

TÞ«e
B and «h

TÞ«h
B comes

from strain effects and random alloy fluctuation, as discussed
in Sec. IV. The difference decreases atd→`, but is still
present for electrons.sii d On-site energies«e and«h depend
on the interdot separation distance because of strain cou-
pling. siii d The electron and hole hopping parameters are well
fit by exponentialsAe−d/d0. This is consistent with tunneling.
We find similar tunneling depthsd0 for electronss2.15 nmd
and holess3.64 nmd, but the hole prefactorAh=−4.25 is
much smaller than the electron prefactorAe=−255 meV.siii d
The magnitude of the on-site Coulomb energy decreases
sfrom −29 meV to −26 meVd, while the interdot interaction
is 1/eeffdeff, where the effective distancedeff=Îd2+D2 re-
flects a charge spreadD of about 4 nm. The prefactor of
approximately 100 in the interdot interaction is an effective
dielectric constant around 14.5, expressed in meV and nm.

In light of these results it is obvious that the starting as-
sumption about the on-site and hopping matrix elements

adopted in the introduction and in Refs. 11, 13, and 14 is not
justified. The energetic of the hole versus electron states with
varying distance turns out to be very different, calling for a
separate treatment of electrons and holes which might lead to
a breaking of the symmetry of theexcitonstates. The elec-
tron states follow bonding-antibonding behavior while the
holes keep, up to the smallest interdot distance, their top-
bottom character. This difference in the behavior of electrons
and holes is related to the different potential barriers experi-
enced by the electron and the holes, as shown in Sec. III, and
to their different effective masses. This is reflected by the
very different tunneling matrix elements in Fig. 13. The elec-
tron and hole states are not only different because of their
tunneling properties but also because of the way they react to
the intrinsic properties of the dot. The single-particle energy
of the electron states located on two well-separated top and
bottom dots is different by about 3 meV. The same energy
difference for the hole states is almost zero. For these rea-
sons, a more elaborate model is necessary and is now, due

FIG. 13. Effective parameters for the two-site HamiltonianH
fEq. s3dg, distilled from our many-body pseudopotential calculation.
The lines are a parametrized fit to our data points, listed in Table I.

TABLE I. Parametrization of the distance dependence of our
effective two-site Hamiltonian, Eq.s3d. These functions are plotted
as solid lines in Fig. 13.

ParametersmeVd Distance dependencesd in nmd

«e
T −1450−436d−1+3586d−2−7382d−3

«e
B −1449−452d−1+3580d−2−6473d−3

«h
T 167+129d−1−2281d−2+6582d−3

«h
B 163+274d−1−3780d−2+9985d−3

te −255 exps−d/2.15d
th −4.25 exps−d/3.64d

Ueh
BB −29.0+7.98/d

Ueh
TT −29.6+19.6/d

Ueh
BT −99.1/Îd2+s3.72d2

Ueh
TB −98.5/Îd2+s4.21d2

BROKEN SYMMETRY AND QUANTUM ENTANGLEMENT OF… PHYSICAL REVIEW B 71, 075325s2005d

075325-11



the detailed results of the pseudopotential-CI calculations
and the derived tight-binding picture, possible to derive.

VI. SUMMARY

We have shown that the proper theoretical treatment of
excitons in dot molecules requires an accurate description on
the single-particle levelsmultiband coupling and strain ef-
fects must be taken into account; single-band approaches
miss the qualitative pictured as well as on the few-particle
level. We showed that simplified high-symmetry models
commonly used in the literature yield qualitatively erroneous
results.

At short interdot separations, the single-particle physics of
the electron states is close to the one of a homonuclear dimer
where the orbitals form bonding and antibonding states. The
hole states remain, even at short interdot distance, localized
on one or the other dot. We showed that the hole behavior
can be explained bysid strain, which inhibits the tunneling,
and sii d the lack of inversion symmetry between self-
assembled quantum dots. This hybrid homo-nuclear-
heteronuclear behavior of electrons and holes leads to four

optically allowed excitons with low degree of entanglement.
At large interdot separation, both the electron and hole

behave like a heteronuclear molecule forming two bright and
two dark excitonic states, all four unentangled.

At a critical distance of 8.5 nmsfor our dotsd we predict
an anticrossing of the two bright excitons accompanied by a
high degree of entanglements80%d of these states. We show
that a many-body effect derived from strain is responsible for
the energetic alignment of these two exciton states. At the
point of energetic alignment, the excitons from bonding and
antibonding exciton states. The lower energy states is shown
to be antisymmetric and therefore optically dark.

In the last section we use our many-body CI results to
parametrize a 434 tight-binding Hamiltonian and give ana-
lytic expressions for the parameters. These parameters could
be used by others to model self-assembled quantum dot mol-
ecules.
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