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Atomic effective pseudopotentials for semiconductors
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We derive an analytic connection between the screened self-consistent effective potential from density-
functional theory (DFT) and atomic effective pseudopotentials (AEPs). The motivation to derive AEPs is to
address structures with thousands to hundreds of thousands of atoms, as given in most nanostructures. The use
of AEPs allows us to bypass a self-consistent procedure and to address eigenstates around a certain region of
the spectrum (e.g., around the band gap). The bulk AEP construction requires two simple DFT calculations of
slightly deformed elongated cells. The ensuing AEPs are given on a fine reciprocal space grid, including the small
reciprocal vector components, are free of adjustable parameters, and involve no fitting procedure. We further
show how to connect the AEPs of different bulk materials, which is necessary to obtain accurate band offsets.
We derive a total of 20 AEPs for group-III-V, II-VI, and IV semiconductors and demonstrate their accuracy
and transferability by comparison to DFT calculations of strained bulk structures, quantum wells with varying
thickness, and semiconductor alloys.
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I. INTRODUCTION

The main motivation for deriving atomic effective pseu-
dopotentials (AEPs) relies on the computational savings that
may be gained by circumventing the self-consistent optimiza-
tion of the density, which is at the heart of density-functional
theory (DFT). The aim is thereby to address the omnipresent
nanoscale, where the relevant structures include thousands,
and often hundreds of thousands, of atoms. The philosophy
behind an AEP not only bypasses the need for a self-consistent
solution but also allows us to focus on a selected part of the
eigenvalue spectrum. The number of “bands” that scales with
the number of atoms in DFT is now independent of the system
size. This latter characteristic is ideal for the study of optical
properties or transport, where mainly the energy states around
the band gap of the materials are involved.

The idea to replace the strong Coulomb potential of the
nucleus together with the bound electrons by an effective,
weaker (pseudo)potential is not new.1,2 The first generation
of the method3–8 was based on the fitting of an empirical
pseudopotential constructed to reproduce experimentally de-
termined energy levels of bulk crystals. In this procedure,
known as the empirical pseudopotential method (EPM), the
entire band structure as well as optical properties of bulk solids
can be obtained with good accuracy with only very few Fourier
components of the pseudopotential (on the order of 3). These
few parameters were simply used as fitting parameters and
adjusted to reproduce known quantities.

In the original EPM, the parameters were directly linked
to the investigated bulk structure through the use of certain G

vectors and transferability (i.e., the applicability of one poten-
tial to different lattice constants or different structures) was
not supported by this type of construction. A simple extension
via interpolation to neighboring points in G space9,10 or a full
analytic dependence of the pseudopotential on the length of
the G vectors11–13 was a natural extension of the method. With
these continuous empirical pseudopotentials, together with
massively parallel codes14–16 or with favorable basis sets,17–19

the electronic and optical properties of nanostructures could be
accurately calculated,19–25 as well as transport properties.26,27

With the aim of getting an improvement in the quality of
the wave functions, and hence of the transferability, a second
generation of empirical pseudopotentials was developed by
Wang, Fu, and Zunger.28,29 In this approach, a series of
bulk self-consistent DFT calculations, in the local-density
approximation (LDA), are performed using a few different
structures (zinc blende, wurtzite, etc.) at different lattice
constants. The screened local effective potentials from DFT
are transformed to G space and fitted by a set of Gaussian
functions. This results in a continuous representation of
the atomic empirical potentials in G space with a good
transferability between different bulk structures. However, as
the structures used in the potential generation are all bulk
systems, no information on the long-range (small G vector)
interatomic interaction is available. Hence the potentials at
G vectors shorter than 2π divided by the lattice constant
remain unknown. Unfortunately, it is precisely this range
of G vectors that becomes relevant for the calculation of
nanostructures, where the shortest relevant G vectors are given
by 2π divided by the cluster size. In the original work,28,29 the
Gaussian function was interpolated from the shortest known G

vector (2π/a) to the G = 0 point. The potential at the G = 0
point was adjusted to reproduce experimentally known work
functions28 and later using an atomic model potential and
screening.29 Furthermore, the energy cutoff was significantly
reduced to save computational resources, so that an empirical
Gaussian function had to be introduced to compensate for this
reduction. Although the quality of the ensuing semiempirical
pseudopotentials (SEPMs) must be expected to be significantly
higher than the EPM, these difficulties may have been the
reason for the rather limited use of this potential generation.

In this paper, we introduce a new generation of pseudopo-
tentials following the philosophy of the EPM and SEPM to
derive a pseudopotential that represents the scattering due to
all the electrons. In this sense, it is distinct from the ionic
pseudopotentials derived for DFT,30–37 although we use a
separable formalism to treat the nonlocal part of the potential
stemming from this community.38 We derive our atomic
effective pseudopotentials (AEPs) via an analytic connection
to the effective crystal potential from DFT. The use of large
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and judiciously chosen slightly deformed supercells gives us
access to the long-range response of the potential. We therefore
derive the pseudopotentials on a very dense grid of G vectors,
including both the long- and short-range interaction regimes.
The method is free of parameters and does not involve any
fitting procedure and is as ab initio as the underlying DFT
calculations. This simplicity allows us to generate, with a
minimum of effort, unique (for a certain DFT norm-conserving
pseudopotential) AEPs. We have successfully generated AEPs
for 20 compound semiconductor materials. A comparison
between the results of our code LATEPP39 using our AEPs
and DFT40 shows differences for the bulk calculations on the
order of a few tens of meV, which originates from our spherical
approximation of the local part of the potential. We have tested
the transferability of the potential on different types of quantum
wells (QWs) and find very satisfying results, demonstrating a
high level of transferability.

II. METHODOLOGY

Our methodology is based on DFT,41,42 where the cen-
tral quantity is the effective Kohn-Sham potential Veff that
describes all the interactions of a single electron with its
environment:(

− h̄2

2m
� + V eff(r)

)
ψi(r) = εiψi(r),

V eff(r) = V ext(r) + V Hartree[n(r)] + V xc[n(r)], (1)

n(r) =
occ∑
i

|ψi(r)|2,

where n(r) is the charge density of all occupied single-
particle states ψi . The second key component is given by the
transformation from the true Coulomb potential

V ext(r) ≡ V ext(r; {Rα}) = −
Nc∑
α

Zαe2

|r − Rα| (2)

into a pseudopotential V̂ psp. The core electrons are thereby
frozen in their atomic configuration following the frozen-core
approximation.43 The pseudopotential is usually written as
a sum of angular momentum projectors divided into a local
(V̂ psp,loc) and a nonlocal (V̂ psp,nloc) part:

V̂ psp =
Nspecies∑

α

Nα∑
n

∑
lm

vαl(|r − τ αn|)̂Pαn,lm

= V̂ psp,loc + V̂ psp,nloc,

V̂ psp,loc =
∑
αn

vpsp,loc
α (|r − τ αn|), (3)

V̂ psp,nloc =
∑
αn

∑
lm

δvαl(|r − τ αn|)̂Pαn,lm, (4)

where α describes the atom type and runs from 1 to Nspecies and
n describes the atom number running from 1 to the number of
atoms of type α, Nα . The atomic positions are given by ταn

and P̂αn,lm is the projection operator. Here we note that all the
pseudopotentials describe correctly the long-range Coulomb
interaction, beyond a certain cutoff:

vαl(r) = −eZα

r
for r > rcut

αl , (5)

where Zα is the charge of the valence of the respective atom.

Atomic pseudopotentials are constructed up to a certain
maximum angular momentum lmax. From Eq. (4) it is clear
that the truncation to lmax only applies to the nonlocal parts
of the potential. One could therefore argue that higher angular
momentum components are incorporated in the local potential.
This fact is not effectively used in the construction of ionic
pseudopotentials but will have some importance for the AEPs
we will derive.

For the implementation of the projectors we follow the
separable form given by Kleinman and Bylander:38

V̂ KB = V loc +
∑
lm

∣∣χKB
lm

〉
EKB

l

〈
χKB

lm

∣∣ , (6)

with the Kleinman-Bylander eigenvalue given by

EKB
l = 〈δVlul|δVlul〉

〈ul|δVl|ul〉 , (7)

and χKB
lm the normalized Kleinman-Bylander projectors∣∣χKB

lm

〉 = |δVlulm〉
(〈ulδVl|δVlul〉)1/2

, (8)

where ulm is an eigenstate of the atomic pseudo-Hamiltonian.
The effective crystal potential from Eq. (1) is now given

more specifically as

V̂ eff = V psp,loc + V Hartree[n] + V xc[n]+ (9)∑
lm

∣∣χKB
lm

〉
EKB

l

〈
χKB

lm

∣∣ . (10)

During the self-consistent cycle of the Kohn-Sham equations
[Eq. (1)] the density is updated until the ground-state density
nscf is found. The starting point for the derivation of our AEPs
is the local part of the self-consistent effective potential:

V loc,eff(r) = V psp,loc(r) + vHartree[nscf] + vxc[nscf]. (11)

The local potential v
psp,loc
α defined in Eq. (3) is an output

of the pseudopotential construction procedure (e.g., after
Hamann, Schlüter and Chiang,30 Kerker,34 Vanderbilt,31 or
Troullier and Martins44) and usually includes one of the
angular momentum components of the ionic pseudopotential.
The Hartree and exchange-correlation parts are, however,
nonspherically symmetric.

From the self-consistent real space potential we can move
to reciprocal space using

V loc,eff(G) = 1

	c

∫
	c

V loc,eff(r)e−iG·r d3r. (12)

We rewrite the local effective potential as a sum of atom-
centered potentials:

V loc,eff(r) =
Nspecies∑

α

Nα∑
n

vα(r − ταn). (13)

With this transformation we can rewrite the total reciprocal
space potential (via variable substitution) as a Fourier sum:

V loc,eff(G) = 1

	c

Nspecies∑
α

Nα∑
n

e−iG·ταnvα(G), (14)
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with

vα(G) =
∫

∞
vα(r)e−iG·r d3r. (15)

III. AEP CONSTRUCTION PROCEDURE

A. Binary systems

The AEPs of a binary system cannot be directly extracted
from the screened local effective potentials of DFT, but can be
determined through v+ and v−:

v+ = va + vc,
(16)

v− = va − vc,

where va(vc) stands for the anion (cation) potential. In the
following we will use a binary system as prototype, but the
procedure can be simplified to pure material by setting va = vc.
We start by explicitly dividing Eq. (13) into cation and anion
components, for systems with equal number of anions (Na)
and cations (Nc):

V
(1)

loc (r) =
Na∑
i=1

va(r − τ i) +
Nc∑
j=1

vc(r − τ j ). (17)

Keeping the same atomic structure, and merely interchang-
ing the atom types (index i and j ), we rewrite

V
(2)

loc (r) =
Nc∑
i=1

vc(r − τ i) +
Na∑
j=1

va(r − τ j ). (18)

The potentials V
(1)

loc and V
(2)

loc are obtained for structures with
the same atomic positions τ , but with an inverted occupation
of cations and anions.

By adding and subtracting V
(1)

loc and V
(2)

loc , we find the
following expressions for v+ and v−:

V
(1+2)

loc (r) = V
(1)

loc (r) + V
(2)

loc (r) =
Natoms∑
n=1

v+(r − τ n), (19)

V
(1−2)

loc (r) = V
(1)

loc (r) − V
(2)

loc (r) =
Natoms∑
n=1

(−1)n+1v−(r − τ n).

(20)

The Fourier transform of the last two equations leads to the
relations

V
(1+2)

loc (G) = 1

	

∫
	

eiG·rV (1+2)
loc (r)d r

= 1

	

[
Natoms∑
n=1

eiG·τ n

]
v+(G), (21)

V
(1−2)

loc (G) = 1

	

[
Natoms∑
n=1

(−1)n+1eiG·τ n

]
v−(G). (22)

The potentials v+(G) and v−(G) are complex quantities, but
into the scheme of the spherical approximation used in this
work, only the real part of the atomic potentials is of interest.
We can extract the spherically averaged AEPs from Eqs. (21)
and (22), by separating them into their real and imaginary

components, and write

vSA
± (|G|) = Re[v±(G)]

= 	

[
Re

[
V

(1±2)
loc (G)

]
β±

+ Im
[
V

(1±2)
loc (G)

]
α±

]
×

(
β±α±

β2± + α2±

)
, (23)

where

β+ =
Natoms∑
n=1

sin(G · τ n),

α+ =
Natoms∑
n=1

cos(G · τ n),

(24)

β− =
Natoms∑
n=1

(−1)n+1 sin(G · τ n),

α− =
Natoms∑
n=1

(−1)n+1 cos(G · τ n).

With vSA
± (G), we can use Eq. (16) to obtain the atomic

potentials va and vc in G space.
The previous development can be used with any binary

system. However, not every structure is suitable to extract the
AEPs. It is, for example, of interest to obtain the potential for
a high enough density of points, not only because that leads
to the inclusion of the long-range interaction, but also because
that allows the utilization of a simple interpolation of points
as a means of constructing a continuous representation of the
potentials in G space.

To generate the atomic potentials, we used a zinc-blende
structure made of 24 atoms and elongated along the [100]
direction, regardless of the ground-state structure of the
different binary systems [wurtzite (wz), zinc blende (zb),
or rocksalt (rs)]. We apply a compressive and a tensile
deformation of 5% along the slab direction in order to break
the symmetry of the crystal and allow the extraction of the
long-range interaction. Note that a large supercell with ideal
bulk atomic positions leads to a fine G vector mesh, but the
structure factor is exactly zero at all the points, except at the G

vectors of the bulk unit cell. As it should be, the large periodic
supercell carries the same information as the unit cell, hence
the need for the deformation.

In Eqs. (21) and (22) we have assumed that the atomic
potentials are independent of the atomic positions, which
is strictly true for the bulk unit-cell calculation but only
approximately for the slab calculation. The main purpose of
using the deformed slab calculation is to obtain points for
small G vectors that are unavailable from a bulk unit-cell
calculation. The slab calculations deliver, however, results for
the entire range of G vectors and these results are identical
(up to numerical accuracy) with the results obtained from
a bulk unit-cell calculation for the large G vectors. For the
shortest available G vector from a unit-cell calculation, Gc, we
observe a small deviation between the slab and the unit-cell
results. We therefore correct the slab results at this specific G

vector by a Gaussian correction to exactly obtain the unit-cell
result (where the assumption of unique atomic potentials is
exactly fulfilled). The shape of the Gaussian correction is fully
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defined by assuming that the correction has dropped to 1% of
its original value at G equal to two times Gc. The correction
is very small compared to the magnitude of the potentials (of
the order of 0.01 to 1% of the energy range of the potentials)
but leads to more general and system independent AEPs.

The orientation of the slab is chosen along the [100]
direction because it allows for the extraction of vSA

− (|G|). This
becomes clear if we write the local potential as

Vloc(r) =
Natoms/2∑

n

[va(r − Rn + rn) + vc(r − Rn − rn)], (25)

with rn the position of the atom n measured from the anion-
cation bond center Rn. In reciprocal space we obtain

Vloc(G) = 1

	

Natoms/2∑
n

eiG·Rn[e−iG·rnva(G) + eiG·rnvc(G)] (26)

= 1

	

Natoms/2∑
n

eiG·Rn[cos(G · rn)v+(G)

− i sin(G · rn)v−(G)]. (27)

We see, in the last equation, that whenever G and r
are perpendicular (as can happen in the [110] orientation,
where the cell can be written by placing the atoms in planes
perpendicular to the direction of the structure) the quantity
multiplying v−(G) becomes zero and v−(G) disappears from
the equations. On the other hand, this expression shows us that
v−(G) becomes less and less important as G approaches zero.

To summarize, the generation of AEPs comprises four
steps: (i) the DFT-LDA calculations of two 24-atom distorted
cell structures, where the atomic positions are interchanged;
(ii) the extraction of the effective atomic potentials from the
screened local potentials obtained in step (i), by applying
Eq. (23) for G vectors along the slab direction leading to a high
density of G points; (iii) adjustment to the bulk properties in
such a way that vSA

± (|G|) passes exactly through vSA
± (|Gc|) (in

this step a DFT calculation of the bulk system is needed); and
(iv) a splines interpolation of the calculated points, in order to
have a continuous form of the potentials in G space.

B. Heterostructures and band offsets

Until now, the AEPs were derived from DFT calculations
of periodically repeated simulation cells of one material. For
periodic systems, the average effective crystal potential, which
corresponds to the V (G = 0) component of the potential, is
ill defined and fixed to arbitrary values in DFT codes. This
means that the energetic position of the eigenstates can be
arbitrarily shifted along the energy axis. This also means that
the eigenvalues of two DFT calculations for different materials,
or even different structures of the same material, cannot be
compared on an absolute scale. Only differences of eigenvalues
within one DFT calculation can be formally compared (see,
e.g., Ref. 45 for a discussion). In a heterostructure made of two
materials A/B and treated with periodic boundary conditions,
the V (G = 0) component remains ill defined and is arbitrary.
However, the difference between the “local” average potential
in the A and in the B regions, as far as this quantity can be
meaningfully defined and calculated, represents the band offset

and is a very real and important quantity. The sign of the band
offset between materials will lead to the localization of the
carriers in either the A or B part of the structure. Calculation
of band offsets based on DFT46–49 involves the calculations of
heterostructures and is a rather subtle task.

We incorporate the effects of band offsets in our AEPs by
linking them together using DFT calculations of heterostruc-
tures. The procedure involves the interchange of the cation
anion positions within a QW heterostructure formed by two
slabs of different materials (A and B). The local potentials can
be written as

V
(1)

loc (r) =
NA

a∑
i=1

vA
a (r − τ i) +

NA
c∑

j=1

vA
c (r − τ j )

+
NB

a∑
k=1

vB
a (r − τ k) +

NB
c∑

l=1

vB
c (r − τ l), (28)

V
(2)

loc (r) =
NA

c∑
i=1

vA
c (r − τ i) +

NA
a∑

j=1

vA
a (r − τ j )

+
NB

c∑
k=1

vB
c (r − τ k) +

NB
a∑

l=1

vB
a (r − τ l). (29)

Extracting the real part of the potential for slab B (vB
±) we

obtain two equivalent expressions:

Re[vB
±(G)] = 	

αB±
Re

[
V

(1±2)
loc (G)

] − αA
±

αB±
Re[vA

±(G)]

+ βB
±

αB±
Im[vB

±(G)] + βA
±

αB±
Im[vA

±(G)], (30)

Re[vB
±(G)] = 	

βB±
Im

[
V

(1±2)
loc (G)

] − βA
±

βB±
Re[vA

±(G)]

− αB
±

βB±
Im[vB

±(G)] − αA
±

βB±
Im[vA

±(G)], (31)

where β± and α± are given by Eq. (24) but are restricted to
one of the slabs A or B.

We therefore have a set of two equations and four
unknowns. Fortunately, the imaginary components, which are
basically the result of the deformation or loss of sphericity of
the potentials due to the environment, vanish in most of the
points and the expressions simplify to

Re[vB
±(G)] = 	

αB±
Re

[
V

(1±2)
loc (G)

] − αA
±

αB±
Re[vA

±(G)], (32)

Re[vB
±(G)] = 	

βB±
Im

[
V

(1±2)
loc (G)

] − βA
±

βB±
Re[vA

±(G)]. (33)

We now fix the AEPs of slab A to the potential derived from the
bulk calculation and extract from either one of the equations
the potentials for slab B up to vB

±(|Gc|), where the linked and
bulk calculations must smoothly converge to the same value.
After Gc the linked and binary potentials are identical.

In this paper, we link the potentials by fixing each potential
once it has been linked and subsequently using it as a basis
to connect the new potential (linking B to A, C to B, D to
C, . . . , A ← B ←C ← D ← · · ·). We defined the linking
order by using QWs with the lowest possible lattice mismatch
among the studied materials. We used a 48-atom zinc-blende
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FIG. 1. (Color online) Comparison between the binary and linked
v+(|G|) and v−(|G|) potentials for GaAs.

QW structure, along the [100] direction, made of two slabs
(A and B) of equal sizes, with a lattice constant equal to the
average of the lattice constants of the two materials, including
the interfaces, and without any relaxation.

Alternatively, we linked the potentials in different orders
and patterns. For example, we followed an asterisk pattern
where all the potentials were linked to a common system
(linking B to A, C to A, D to A, . . . , A ← B, A ← C, A ← D,
A ← · · ·), with no major differences found in the results for any
case. The linking order can then, to some extent, be arbitrary,
as far as a previously established link is not broken.

In Fig. 1 we present, as example, the variations that v+(|G|)
and v−(|G|) experience when they are linked to another
system. In this example, GaAs has been linked to AlAs. In
the case of GaAs, |Gc| = 1.027 a.u. and Fig. 1 shows how the
linked and bulk potentials converge to the same values starting
at G = Gc. Even though the variation of the linked potential is
only in the small G region and it is seemingly small, it carries
all the information of the band offset. Hence, the utilization
of AEPs, in nanostructures composed of different systems,
without the linking procedure, leads to results that can deviate
considerably from DFT calculations.

C. Deformation potentials

The v+(G = 0) component of the potential does only
shift the eigenspectrum along the energy axis and has no
meaning as it comes out of a DFT calculation. However, this
value influences the conduction and valence-band deformation
potentials individually. Again, the gap deformation potential
is (as it should) independent of this value. As a post-AEP
generation improvement to the LDA results, we decide to fix
the v+(G = 0) to reproduce the DFT values of the valence-
band deformation potential according to Li et al.50,51 for most
of the materials. For SiGe, we averaged the values of pure Si
and pure Ge. For SiC, we reproduced the absolute deformation
potential reported by Lambrecht et al.52 In the case of MgO,
we used the value reported by Zhu et al.53 The values we used
are given in Table I.

IV. ASSESSMENT OF THE POTENTIAL QUALITY

A. Used norm-conserving pseudopotentials

We started by generating a set of norm-conserving pseu-
dopotentials to be used in the DFT calculations. The pseudopo-

TABLE I. Absolute volume deformation potential (in eV) for the
valence-band maximum (aVBM

v ).

III-V aVBM
v II-VI aVBM

v IV-IV aVBM
v

InSb 1.61 CdTe 0.89 Ge 2.23
AlSb 2.65 CdSe 0.90 SiGe 2.30
InAs 1.79 ZnTe 0.99 Si 2.38
GaSb 1.91 ZnSe 1.23 SiC 4.30
InP 1.83 MgO 1.66 C 2.16
AlAs 2.93 ZnO 0.48
GaAs 2.24
AlP 2.60
GaP 1.98

tentials used to calculate the screened local potentials in DFT
are directly related to the generated AEPs. The AEPs have to
be used together with the nonlocal part of the norm-conserving
pseudopotentials in any future calculation. As our main interest
in extracting AEPs is the reduction in computational time
when studying semiconductor nanostructures, we used soft
pseudopotentials generated with the FHI code,54 by including
only up to p electrons when possible, and going up to d

electrons when strictly required. In the case of the group-III-V
and group-IV semiconductors, we always used the default FHI

values for the real space cutoff radius of the different angular
momentum channels. In the case of the II-VI compounds,
we increased the real space cutoff radius as it leads to faster
convergence with the energy cutoff at a very modest cost in
accuracy (see later).

In the following examples, we compare between DFT
calculations and the results we obtain by using our AEPs. We
treat three different systems: bulk, alloys, and elongated slab
systems. In both methods we used always high values of plane-
wave energy cutoff (40 Hartree) to ensure the convergence of
the results. The k-point distributions in DFT were set to 4x4x1
for the slabs, 4x4x4 for the alloys, and 8x8x8 for the bulk
systems. We estimate, based on the accuracy of other methods,
a deviation of up to 100 meV for band gaps and band structures
as acceptable for our AEPs. The accuracy will be shown to be
often significantly higher.

B. Comparison with DFT for bulk: errors induced
by the spherical approximation

The first test of our potentials is against the bulk results
obtained by a self-consistent DFT calculation naturally per-
formed without spherical approximation. We refer to these
calculations as “DFT” in the first column in Table II, where we
report the value of the band gaps. In the second column, “AEP,”
we report the results using our AEPs. The third column gives
the energy difference between both approaches and is the result
of the errors stemming from the spherical approximation. The
last column shows the DFT relaxed lattice constants (ao) used
to generate the atomic potentials. We have, in general, errors in
the energy band gap of a few tens of meV, with the exception of
carbon, with an error of 160 meV, which is still small compared
to the LDA band gap of over 5 eV. In Table II, we find the
first tests of the transferability of some AEPs. In the case of
CdSe, MgO, and ZnO, we have calculated the bang gap of
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TABLE II. Comparison of the single-particle band-gap gap at the
� point or at the L point when indicated by (*). The bulk crystals
have mostly the zinc-blende structure and, in a few cases, the rocksalt
(rs) or wurtzite (wz) structures. For the wurtzite structure, both lattice
parameters, c and a, are given.

Compound DFT (eV) AEP (eV) � (meV) ao (a.u.)

III-V
InSb (*) 1.3970 1.4691 72 12.053
AlSb 1.5864 1.6444 58 11.478
InAs (*) 1.6993 1.7570 58 11.442
GaSb 0.5611 0.6569 96 11.211
InP 0.1921 0.2491 57 11.186
AlAs 1.6493 1.7080 59 10.719
GaAs 0.4182 0.4887 70 10.596
AlP 2.5867 2.6419 55 10.429
GaP 1.3570 1.4253 68 10.344
II-VI

CdTe 0.2914 0.2631 −28 12.174
CdSe 0.2441 0.2330 −11 11.563
CdSe (wz) 0.2969 0.2891 −8 (a) 8.182

(c) 13.340
CdSe (rs) 0.6528 0.6624 10 10.711
ZnTe 0.8550 0.8094 −45 11.364
ZnSe 0.9960 0.9774 −19 10.707
MgO 2.8588 2.8702 −11 8.892
MgO (rs) 4.0744 4.1021 28 8.156
ZnO 0.6566 0.6037 −53 8.762
ZnO (wz) 0.7423 0.7586 16 (a) 6.200

(c) 10.110
IV-IV

Ge 0.1646 0.2493 84 10.695
SiGe 1.5704 1.5121 −58 10.514
Si 2.5731 2.6601 87 10.356
SiC 5.3334 5.3965 63 8.368
C 5.6474 5.8077 160 6.687

stable structures different than zinc blende. We find that the
deviations due to the spherical approximation are of the same
order of magnitude as the deviations we obtain by changing
the crystal structure. Note that InAs and InSb have a vanishing
band gap in LDA, so that we chose to give the gap at the L

point in Table II.

C. External and internal strain situations

In the following test, we selected one group-III-V, one
group-II-VI, and one group-IV material, namely, AlP, ZnSe,
and SiC, and studied the band gaps under different strain
conditions. We start by studying the bulk materials under the
effects of uniform expansion and compression and show the
results in Fig. 2. We see a quasilinear dependence in all cases,
going from large band gaps, when the sample is compressed, to
smaller band gaps in the expanded situation. The AEP results
follow well the self-consistent DFT calculations. In Fig. 3 we
plot the deviations between the AEP and the DFT results.
This deviation becomes important when the effective potential
starts to be significantly modified by self-consistent effects.
Until around 5% the approximation of rigid overlapping
potentials remains accurate. The value of 5% is very large
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FIG. 2. (Color online) Band gap for selected bulk materials, as
a function of the lattice-constant deformation calculated using self-
consistent DFT and using our AEPs.

for a hydrostatic deformation and will not be encountered in
any experimental situation.

Variations of the lattice constant are translated in terms of
variations in the reciprocal space mesh. If the lattice constant
is expanded, the G space mesh becomes denser and the AEP
calculation probes G vectors that are shorter than the critical
length Gc defined by the relaxed lattice. The calculations
done with compressed lattice constants accordingly probe G

vectors longer than Gc. This constitutes a good indication of
the transferability of our AEPs.

Figure 3 also shows the deviations of the band-gap energies
when the calculations are done with the AEPs before and after
(“link” notation in Fig. 3) the linking procedure (Sec. III B).
As expected, we see that the results of the AEP calculations
are identical in the compressed situations, because in these
calculations the sets of used G vectors are always longer than
Gc, for which we ensured by constructions that the linked and
binary AEPs are identical. We obtain differences between the
linked and the binary AEPs in the expanded case of only a few
meV, which is acceptable.

One more test performed in this section is aimed at testing
not only the response of the material to strain, but also the long-
range quality of our potential. For this purpose we constructed
a 32-atom and a 36-atom cell elongated along the [110] and
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FIG. 3. (Color online) Deviations of the AEP calculations from
the DFT results for different bulk materials as a function of lattice
deformation.
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TABLE III. Energy band-gap deviations of the AEP calculations
from the DFT results �Eg = Eg(AEP) − Eg(DFT). The AEPs are
obtained from the binary system (Binary) and after the linking
procedure (Linked). The deformation is applied along the [110]
direction.

�Eg (meV)

AlP ZnSe SiC

Deformation Binary Linked Binary Linked Binary Linked

0% (Bulk) 55.2 55.2 −18.6 −18.6 63.1 63.1
1% 84.4 82.3 −20.7 −25.2 11.4 −34.1
2% 81.6 76.1 −27.0 −39.1 −12.1 −118
3% 81.4 72.0 −32.7 −52.1 −33.5 −208
4% 83.4 69.5 −36.2 −62.1 −52.7 −304
5% 87.8 68.7 −36.8 −68.7 −69.8 −405
6% 94.6 69.7 −34.9 −72.2 −84.6 −511

the [100] directions, respectively. We compressed one half
of the cell and expanded the other half, along their respective
orientations. The lattice constant in the perpendicular direction
was kept at the bulk value. With this construction, the interface
between the expanded and the compressed regions has the
ideal lattice constant as well, and the length of the cell remains
constant for different deformations.

In Tables III and IV we report the difference in the band
gap between the AEP and the DFT calculations. As these
slabs are binary systems, we can use again the potentials as
originally derived from the deformed structures or the atomic
potentials obtained after the linking procedure. In all cases the
variations of the band gaps with the deformations are very
well reproduced by the AEP calculations, however with a
slightly better agreement for the [110] slab. The deviations
of the binary potentials of AlP and ZnSe (the second and
third columns in Table III) change by only a few meV as
the deformation is increased. The better quality in the results
of the [110] sample may be attributed to the fact that the
potential v− does not play any role in this structure. In
the case of SiC, the results are deteriorated by the linking
procedure, which is due to the large lattice mismatch, by
around 20%, with respect to Si (Table II). We therefore have
to use a strongly deformed structure to connect the potentials
of SiC to Si and C, which compromises the quality of the
results. In this case, the quality of the linked AEPs could be

TABLE IV. Equivalent to Table III for a deformation applied
along the [100] direction.

�Eg (meV)

AlP ZnSe SiC

Deformation Binary Linked Binary Linked Binary Linked

0% (Bulk) 55.2 55.2 −18.6 −18.6 63.1 63.1
1% 81.7 72.5 −22.0 −26.5 8.30 −76.9
2% 67.7 45.1 −32.6 −45.4 −36.1 −237
3% 52.6 16.5 −44.1 −64.9 −82.4 −398
4% 37.8 −11.4 −54.9 −82.6 −128 −558
5% 23.6 −38.8 −63.7 −97.3 −173 −717
6% 9.02 −66.5 −71.7 −110 −217 −793

 0

 1

 2

 0  0.2  0.4  0.6  0.8  1

E
g 

(e
V

)

Concentration x

GaxAl1-xAs (DFT)

GaxAl1-xAs (AEP)

x 1-xGa In P (DFT)

GaxIn1-xP (AEP)

FIG. 4. (Color online) DFT and AEP band-gap calculations for a
64-atom alloy system at different concentrations.

improved by selecting a more suitable structure to link the
potentials.

Since the deviations between the DFT and the AEP results
are only slightly different for the two different orientations,
we conclude that the long-range response of the potential
to the strained situation is not significantly affected by the
nature of the interface. In the case of a [110] structure, the
interface layers are composed of mixed anion-cation atoms,
while the interfaces in a [100] structure are composed of
pure anion and pure cation atoms, qualitatively very different
situations. This represents an important conclusion of our
work.

D. Semiconductor alloys: errors induced by the local average

Here we considered 64-atom supercells of GaxAl1−xAs and
GaxIn1−xP alloys in the zinc-blende structure. The alloying is
simply done as a local average, where the AEP for an As
atom surrounded by n Ga and (4 − n) Al atoms is written as a
weighted sum of the type

vAs{nGa,(4 − n)Al} = 1
4

[
n vGaAs

As + (4 − n) vAlAs
As

]
,

where v
AlAs(GaAs)
As represents the AEP of As derived from the

AlAs (GaAs) structure. Note that the AEPs vAlAs
As and vGaAs

As
should be different since the As AEP contains information on
the bonding and its environment. In practice both quantities are
surprisingly similar. In Fig. 4 we show the DFT results along
with the results of the AEPs in a similar way as done before.
The atomic concentration has been modified in such a way
that we have a successive transition from one bulk material to
the other (x = 0 or 1). The atom positions have been relaxed
in order to approach a realistic structure, by using the valence
force field method.20,55

The AEP and DFT calculations show the same qualitative
behavior and differ quantitatively by a magnitude similar
throughout the composition range. These results demonstrate
the validity of the linking procedure. It is worth mentioning
here that AEP calculations using unlinked potentials lead to
very different results as the band offsets are arbitrary.
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E. Quantum wells: errors induced by a lack of charge transfer
at the interface

The next test we perform is aimed at testing the quality
of the long-range response of the AEPs due to the presence
of a heterostructure interface. In Fig. 5 we plot the band gap
as a function of the well (or barrier) thickness for a 36-atom
[100] oriented A/B superlattice with zinc-blende structure.
As test systems we select GaP/AlAs, CdSe/ZnTe, and Si/Ge.
The structures have been relaxed by using an averaged
lattice constant perpendicular to the superlattice direction and
according to Poisson’s ratio along the superlattice.

Through this configuration procedure, the structures all
have different dimensions; this means that they require a
different set of G vectors in reciprocal space. Besides, the
G mesh is rather dense, due to the size of the sample. This
represents a highly demanding test for our AEPs since the
full range of G space is required. Furthermore, in each one
of these calculations a considerable number of potentials is
needed due to the presence of the interface. For instance, for
the GaP/AlAs superlattice, we need eight AEPs: four for each
one of the slabs (GaP and AlAs) and four for the two interfaces
(AlP and GaAs).

All the AEP calculations show good agreement with the
DFT calculations in Fig. 5. The CdSe/ZnTe superlattice shows
less deviations in the energy band gap, but the results are
also less parallel to the DFT calculations in comparison to
the GaP/AlAs and Si/Ge cases. This is due to the increase
in the real space cutoff radii applied to the norm-conserving
pseudopotentials of the II-VI materials, which leads to a loss
in transferability in both DFT and AEP calculations. However,
the deviations for the CdSe/ZnTe superlattice never exceed 30
meV, well within our target accuracy.

In order to see the effects on the quality of the wave
functions, we selected the GaP/AlAs supercell with 14 layers
of GaP and 4 layers of AlP and show in Fig. 6 the square of
the VBM and CBM wave functions after averaging over the
(100) planes. The figure shows a type II superlattice, where
the VBM wave function is mostly localized in the GaP region
and the CBM wave functions are localized in the AlAs region.
We compare the AEP with the DFT state densities and notice a
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FIG. 6. (Color online) Square of the CBM and VBM wave
functions in a [100] GaP/AlAs superlattice with 14 layers of GaP
and 4 layers of AlP. The wave functions have been integrated in
planes along the axes of the superlattice. The calculations are done
using DFT and our AEPs.

good agreement for the envelope of these strongly oscillating
functions, but also some differences in the values of maxima
and minima within these atomic oscillations. Looking at the
CBM densities carefully, we notice a slight increase of the
density in the AlAs layer compared to the AEP case. A slightly
less confined CBM wave function is in agreement with the
small energetic differences found in Fig. 5 for this case. Of
relevance for the test is the fact that the long-range responses
of the potentials are called upon to describe the long-range
oscillations of the envelope functions and the asymmetry on the
localization of the wave functions due to the different character
of the interfaces, GaAs on one side and AlP on the other.

V. SUMMARY

In summary, we have developed a methodology to derive
atomic effective pseudopotentials (AEPs) from simple DFT
calculations. The procedure involves DFT calculations for two
slabs with compressed and expanded regions. We establish an
analytic connection between the DFT effective Kohn-Sham
potentials and the AEPs. The procedure is therefore free of
parameters and does not involve any fitting procedure, which
represents the main achievement of this work. We furthermore
establish a method to connect the AEPs for different materials,
rigorously from DFT calculations. Our AEPs intrinsically
contain band offsets between materials that are inherited from
the DFT calculations, without having to explicitly calculate
them. We demonstrate the accuracy and transferability of the
AEPs for a total of nine group-III-V, six group-II-VI, and
five group-IV elements and find very good agreement with
self-consistent DFT calculations.
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