MONO-, DI- AND TRIPHOSPHATE PRODRUGS OF THE **T-1105 RIBONUCLEOTIDES**

Johanna Huchting¹, Lisa Oestereich², Stephan Guenther² and Chris Meier¹

¹Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany. huchting@chemie.uni-hamburg.de ²Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.

Introduction

- Nucleoside analogues (NAs) can interfere with RNA/ DNA replication \rightarrow anticancer & antiviral agents.
- First: intracellular conversion to the nucleoside triphosphate.
- Often NAs are poor substrates for the phosphorylating enzymes \rightarrow decreased therapeutic efficiency.
- T-705: heterocyclic carboxamide; developed to treat Influenza Virus infections; exhibits activity against a broad range of RNA viruses as does the defluoro analogue T-1105.
- It acts as a nucleobase analogue and is converted to the active ribosyl-triphosphate (RTP) inside cells:
 - First step: conversion of the heterocycle to the ribosyl-monophosphate (T-705-RMP), inefficiently catalyzed by the Hypoxanthine-Guanine-Phosphoribosyltransferase (HGPRT).¹
 - Subsequent phosphorylation to the triphosphate most likely also catalyzed by host cell enzymes.

Direct application of the nucleotides seems desirable to improve the antiviral activity.

UH Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG FAKULTÄT FÜR MATHEMATIK, INFORMATIK

UND NATURWISSENSCHAFTEN

Objective

Intracellular delivery of the ribonucleoside mono-, diand -triphosphate of T-1105 to improve the antiviral activities.

- Synthesis of different Prodrugs: mask the charges, increase the lipophilicity and release the nucleotide inside the cell.
 - Nucleoside Monophosphate: cycloSal-concept²
 - Nucleoside Diphosphate: DiPPro-concept³
 - Nucleoside Triphosphate: TriPPPro-concept⁴

Synthesis and antiviral Evaluation of the cycloSal-Pronucleotides

- Successful synthesis of the 2',3'-di-O-acetyl-protected and the 2',3'-unprotected 3-Me-cycloSal-T-1105-RMPpronucleotides - first ever reported T-1105-RMPpronucleotides.
- New and highly efficient synthesis of ribo-cycloSalpronucleotides employing the para-methoxy benzylidene protecting group.
- For unknown reasons, both pronucleotides 3 and 5 didn't show significant antiviral activity when studied against EBOV, LASV and CCHFV in Vero cells while the parent compound proved to potently inhibit virus replication.

Synthesis and antiviral Evaluation of the DiPPro- and TriPPPro-Compounds

• First report on the synthesis of T-1105-RMP 6 and -RDP 10. Modification of

the bis(fluorenylmethyl) phosphoramidite protocol for the DP synthesis⁵ led to

- Successful synthesis of DiPPro-T-1105-RDPs and TriPPPro-T-1105-RTPs in high purities - first ever reported di- and triphosphate prodrugs of the T-1105
- The DiPPro- and TriPPPro-compounds 11/12 showed moderate in vitro

Next: 1) Studies on the stability of the compounds; 2) Studies in different cell lines and mouse model.

Successful synthesis of mono-, di- and triphosphate prodrugs of T-1105 ribonucleotides.

Antiviral evaluation against three different hemorrhagic fever viruses shows no activity for the MP prodrugs but moderate activity for the DiPPro- and TriPPPro-compounds.

Do the prodrugs penetrate the cell membrane and release the respective nucleotide?

References

1 Naesens, L. et al. Mol. Pharmacol. 2013, 84, 615-628. 2 Meier, C. Eur. J. Org. Chem. 2006, 1081-1102. 3 Meier,

Acknowledgement

C. et al. Curr. Med. Chem. 2015, 3933-3950; 4 Gollnest, T. et al. Angew. Chem., Int. Ed. 2016, 55, 5255-5258.

We are grateful for funding provided by the Deutsche Forschungsgemeinschaft

5 Cremosnik, G. S. et al. Angew. Chem., Int. Ed. 2014, 53, 286-289. Hofer, A. et al. Chem. Eur. J. 2015, 21, 10116-

Intracellular release of T-1105-RMP to be studied.