# Mono-, Di- and Triphosphate Prodrugs of the T-1105 Ribonucleotides 

Johanna Huchting ${ }^{1}$, Lisa Oestereich ${ }^{2}$, Stephan Guenther ${ }^{2}$ and Chris Meier ${ }^{1}$

${ }^{1}$ Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg,
Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany. huchting@chemie.uni-hamburg.de ${ }^{2}$ Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.

FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

## Introduction

- Nucleoside analogues (NAs) can interfere with RNA/ DNA replication $\rightarrow$ anticancer \& antiviral agents.
- First: intracellular conversion to the nucleoside triphosphate.
- Often NAs are poor substrates for the phosphorylating enzymes $\rightarrow$ decreased therapeutic efficiency.
- T-705: heterocyclic carboxamide; developed to treat Influenza Virus infections; exhibits activity against a broad range of RNA viruses as does the defluoro analogue T-1105.
- It acts as a nucleobase analogue and is converted to the active ribosyl-triphosphate (RTP) inside cells:
- First step: conversion of the heterocycle to the ribosyl-monophosphate (T-705-RMP), inefficiently catalyzed by the Hypoxanthine-Guanine-Phosphoribosyltransferase (HGPRT). ${ }^{1}$
- Subsequent phosphorylation to the triphosphate most likely also catalyzed by host cell enzymes.
$\Rightarrow$ Direct application of the nucleotides seems desirable to improve the antiviral activity.



## Objective

Intracellular delivery of the ribonucleoside mono-, diand -triphosphate of T -1105 to improve the antiviral activities.

- Synthesis of different Prodrugs: mask the charges, increase the lipophilicity and release the nucleotide inside the cell.
- Nucleoside Monophosphate: cycloSal-concept ${ }^{2}$
- Nucleoside Diphosphate: DiPPro-concept ${ }^{3}$
- Nucleoside Triphosphate: TriPPPro-concept ${ }^{4}$


## Synthesis and antiviral Evaluation of the cycloSal-Pronucleotides



- Successful synthesis of the $2^{\prime}, 3^{\prime}$-di-O-acetyl-protected and the $2^{\prime}, 3^{\prime}$-unprotected 3 -Me-cycloSal-T-1105-RMPpronucleotides - first ever reported T-1105-RMPpronucleotides.

New and highly efficient synthesis of ribo-cycloSalpronucleotides employing the para-methoxy benzylidene protecting group.

For unknown reasons, both pronucleotides 3 and 5 didn't show significant antiviral activity when studied against EBOV, LASV and CCHFV in Vero cells while the parent compound proved to potently inhibit virus replication.

Intracellular release of T-1105-RMP to be studied.

## Synthesis and antiviral Evaluation of the DiPPro- and TriPPPro-Compounds




RP-HPLC-chromatogram (shown for $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{C}_{9} \mathrm{H}_{19}{ }^{-}$ DiPPro 11; absorption at 350 nm ) confirms $98 \%$ purity after four freeze-thaw-cycles in dmso.

## Conclusion and Outlook

Successful synthesis of mono-, di- and triphosphate prodrugs of T-1105 ribonucleotides
Antiviral evaluation against three different hemorrhagic fever viruses shows no activity for the MP prodrugs but moderate activity for the DiPPro- and TriPPPro-compounds.
$\square$ Do the prodrugs penetrate the cell membrane and release the respective nucleotide?

## References

1 Naesens, L. et al. Mol. Pharmacol. 2013, 84, 615-628. 2 Meier, C. Eur. J. Org. Chem. 2006, 1081-1102. 3 Meier C. et al. Curr. Med. Chem. 2015, 3933-3950; 4 Gollnest, T. et al. Angew. Chem., Int. Ed. 2016, 55, 5255-5258. 5 Cremosnik, G. S. et al. Angew. Chem., Int. Ed. 2014, 53, 286-289. Hofer, A. et al. Chem. Eur. J. 2015, 21, 1011610122.

## Acknowledgement

We are grateful for funding provided by the Deutsche Forschungsgemeinschaft (DFG; Project HU2350/1-1).

