SYNTHESIS OF MODIFIED T-1106-5'-TRIPHOSPHATES AS **POTENTIAL INHIBITOR OF THE SARS-COV-2 RDRP** Aix*Marseille

<u>Benedikt Ganter¹, Johanna Huchting¹, Barbara Selisko², Bruno Canard² and Chris Meier¹</u>

1 Faculty of Sciences, Department of Chemistry, Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany 2 Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille Université, UMR 7257, 13009 Marseille, France

3'-Deoxy-3'-fluoro modification	3'-Deoxy-3'-azido modification (as in AZT)	2'-deoxy-2'-fluoro-2'-methyl modification (as in Sofosbuvir)	
Different MoA? Forced chain termination?	Different MoA? Forced chain termination?	Less off-target? Different <u>MoA</u> ?	
 Modified T-1106 regarding polym could enhanced 	triphosphates might she erase inhibition, or diffe the antiviral potency c	ates might show different mechanistic ibition, or different <i>in vivo</i> properties that ral potency compared to T-1106.	
 Establishing a re 5⁻-Triphosphate 	eliable route for the syr	thesis of modified T-1106-	

Ribose Building Blocks

Nucleoside Synthesis I

Nucleoside Synthesis II

Triphosphate Synthesis

Collaboration & Funding

Conclusion

- Successful synthesis of five different modified T-1106-5⁻-Triphosphates via a reliable and éfficient synthetic route.
- The Triphosphates are currently part of antiviral assays. •

- We thank our collaboration partner at the CNRS and Aix-Marseille Université from the group of B. Canard.
- We are greatful for the financial support received from the German Centre for Infection Research (Thematical Translation Unit: Emerging Infections) and the University of Hamburg.

Future Perspectives

References

Synthesis of Prodrugs.

CINIS

Synthesis of new modifications (C-Nucleosides)

[1] Shannon, A., Selisko, B., Le, NTT. et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. *Nat Commun* **11**, 4682 (2020).

[2] Huchting, Johanna, et al. Synthesis of T-705-Ribonucleoside and T-705-Ribonucleotide and Studies of Chemical Stability. *ChemMedChem* **12**,652-659, (2017).