1. Scope and Introduction

“Bioinorganic Chemistry” is at the gate-way of inorganic chemistry and biochemistry, i.e. it describes the mutual relationship between these two sub-disciplines, with focus upon the function of inorganic “substances” in living systems, including the transport, speciation and, eventually, mineralisation of inorganic materials, and including the use of inorganics in medicinal therapy and diagnosis. These “substances” can be metal ions (such as K⁺, ferrous and ferric), composite ions (e.g. molybdate), coordination compounds¹ (like cisplatin and carbonyltechnetium), or inorganic molecules such as CO, NO, O₃. Medicinal inorganic chemistry on the one hand, and biomineralisation on the other hand, are important integral parts.

Inorganic reactions have possibly played an important role in the formation and development of organic “life molecules” in the prebiotic area (terrestrial and/or extraterrestrial), and from the very beginning of life on Earth. Inorganic chemistry is involved in structure and function of all life forms present nowadays on Earth, belonging to one of the three main branches, viz. bacteria, archaea and eucarya (Fig. 1). Life started ca 3.5 billion years ago with LUCA, the first uniform (and unknown) common ancestor. At that time, our planet was already covered by oceans. The overall situation was, however, completely different from that of today: The primordial atmosphere (also referred to as “primordial broth”) contained CO₂, N₂ and H₂O as the main components, and trace amounts of gases like H₂, CO, COS, H₂S, NH₃ and CH₄ from volcanic exhalations, and trace amounts of oxygen from the decomposition of water by electric discharges, cosmic rays and radioactivity. The Earth’s crust was essentially unstable due to wide-spread volcanism and bombardment by debris (meteorites), remainders from the constitution of the solar system some 4.5 billion years ago.

A key reaction at that time was the conversion of ferrous sulfide to ferrous disulfide (pyrite, FeS₂) (eqn. 1), accompanied by a reduction potential of -620 mV, enough to enable reductive carbon fixation, including reductive C-C coupling, and thus to allow entrance into the world of organic compounds. Eqns. (2) (formation of thiomethanol as a key compound) and (3) (formation of thioacetic acid) are examples. Of particular interest is the formation of “active acetic acid methylester“ (eqn. 3b), which is an essential constituent of acetyl-coenzyme-A, a focal product in biological carbon cycling, the synthesis of which is catalysed by an acetylcoenzyme-M synthase, a iron-nickel-sulphur enzyme.

\[
\begin{align*}
\text{FeS} + \text{HS}^- & \rightarrow \text{FeS}_2 + 2[\text{H}] \quad \Delta E^0 = -620 \text{ mV} \quad (1) \\
\text{COS} + 6[\text{H}] & \rightarrow \text{CH}_3\text{SH} + \text{H}_2\text{O} \quad (2) \\
\text{CH}_3\text{SH} + \text{CO} & \rightarrow \text{CH}_3\text{COSH} \quad (3a) \\
2\text{CH}_3\text{SH} + \text{CO}_2 + \text{FeS} & \rightarrow \text{CH}_3\text{CO(SCH}_3\text{)} + \text{H}_2\text{O} + \text{FeS}_2 \quad (3b)
\end{align*}
\]

¹ For the definition and further aspects of coordination compounds see insets on pp. 5 and 7.
“Active acetic acid” readily reacts with amino acids (formed in the primordial broth by electric discharge; and/or in interstellar clouds by irradiation and carried to Earth confined in the ice cores of comets) to form peptides, which chiral selection and further polymerise on chiral matrices provided by certain clays and quartz minerals. Concomitantly, nucleobases can form under primordial and interstellar conditions, and polymerise to RNA, unique molecules which not only store information and transform this information into proteins, but also can act – like proteins – as enzymes (so-called ribozymes). The first life forms, primitive cellular organisms capable of self-sustenance and self-replication, are actually believed to have been members of an “RNA world”, which later has been replaced by our DNA world.

Fig. 2 classifies the bio-elements: Along with the “organic elements” (C, H, O, N, S), building up bio-mass, many “inorganic elements” play an important role in the physiological context. Some of these inorganic elements, such as Fe, Cu and Zn, are present in (practically) all organisms, others are important for a restricted number of organisms only. An additional group of elements are used for diagnostic or therapeutic applications.
Significance of biologically important elements (selection)

Na\(^+\) and K\(^+\): Most important „free“ intra- and extracellular cations. Regulation of the osmotic pressure, membrane potentials, enzyme activity, signalling.

Mg\(^{2+}\): Chlorophyll; anaerobic energy metabolism (ATP → ATP).

Ca\(^{2+}\): Signalling, muscle contraction, enzyme regulation. Main inorganic part of the endoskeletons (bones, teeth, enamel: hydroxyapatite; Ca\(_5\)(PO\(_4\))\(_3\)(OH)). Exoskeletons of mussels, shells, corals, sea urchins etc: aragonite or calcite; CaCO\(_3\)).

V\(^{IV/V}\), Mo\(^{IV/VI}\), W\(^{IV/VI}\), Mn\(^{II/III/IV}\), Fe\(^{II/III}\), Ni\(^{II/III}\), Cu\(^{I/II}\): active centres in electron-transport (redox) enzymes, oxygenases, dismutases.

Fe and Cu: Transport of oxygen.

Fe\(^{III}\): Iron-storage proteins (ferritins).

Fe\(^{II} + Fe^{III}\) in magnetite (Fe\(_3\)O\(_4\)): orientation of magnetobacteria, pigeons, bees in Earth’s magnetic field.

Co: Synthases and isomerases (cobalamines, e.g. vitamin-B\(_{12}\)); methylation of inorganics.

Zn\(^{2+}\): In the active centre of hydrolases, carboxyhydrase, alcohol dehydrogenase, synthases; genetic transcription (zinc fingers), stabilisation of tertiary and quartenary structures of proteins; repair enzymes.

Si\(^{IV}\) (“silicate“): Involved in the built-up of bones. In the form of SiO\(_2\)/silica-gels as support in monocotyledonous plants (like grass) and the shells of diatoms.

P\(^{V}\) (phosphate): Constituent in hydroxi- and fluorapatite (Ca\(_5\)(PO\(_4\))\(_3\)(OH/F)); energy metabolism (ATP), NADPH, activation of organic substrate; phospholipids in cell membranes; phosphate esters (DNA, RNA,…).

Se\(^{II}\): Selenocystein in special enzymes (e.g. glutathionperoxidase)

F\(^-\): Fluorapatite (Ca\(_5\)(PO\(_4\))\(_3\)F) in dental enamel

Cl\(^-\): Along with hydrogencarbonate the most important free anion.

I: Constituent of thyroid hormones (such as thyroxine).

Medicinal relevant elements (selection):

Li\(^+\): Treatment of bipolar disorder (maniac depression) and hypertension.

Gd\(^{3+}\): Contrast agent in magnetic resonance tomography of soft tissues.

BaSO\(_4\): Contrast agent for X-ray tomography. Sun protection.

\(^{99m}\)Tc (a metastable γ-emitter; t\(_{1/2}\) = 6 h): Radio diagnostics (bone cancer, infarct risk, …)
PtII: Chemotherapy (e.g. with cisplatin cis-[Pt(NH$_3$)$_2$Cl$_2$]) of cancer (ovaria, testes).

AuI: Therapy of rheumatic arthritis.

SbIII: Treatment of inflammatory skin pimples like acne.

BiIII: Treatment of gastritis.

Transition metal ions commonly are not present in a free form, but rather coordinated (complexed) to ligands. In particular, this applies to metal ions in the active centres of enzymes or otherwise integrated into peptides and proteins. Examples for the respective ligands are listed below (N-functional: peptide moiety, porphinogenes, histidine; O-functional: tyrosinate, serinate, glutamate and aspartate; S-functional: cysteinate and methionine):

Additional inorganic ligands:

2. Iron

Iron takes over a central role in biological events (see also its role in the primordial synthesis of organic compounds; ch. 1). On the one hand, this is due to its general availability (iron is abundant and ubiquitous in the geo- and biospheres), on the other hand, iron has specific and "biologically suitable" properties otherwise not (or less) available with other transition metals:

1. Ease of change between the oxidation states +II and +III (and disposability also of the oxidation states +IV and +V);
2. Formation of hexaaqua cations in water; these hexaaqua cations are Bronsted acids;
(3) Tendency to form oligo- and polymers by condensation;
(4) Easy change between high- and low-spin states in ligand fields of medium strength
(spin cross-over; see inset on p. 7, upper part);
(5) Flexibility with respect to the nature of the donating ligand function (see inset on p. 7,
lower part, for ligand classification), the coordination number and coordination
geometry.

Tutorial: Coordination compounds (1): Definition

Coordination compounds, or complexes, are integral molecular or ionic units consisting of a
central metal ion (or atom), bonded to a defined number of ligands in a defined geometrical
arrangement. The ligands can be ions or (induced) dipolar molecules. Each ligand provides
a free electron pair, i.e. the ligands are Lewis bases, while the metal in the coordination
centre is the Lewis acid. The bonding can thus be described in terms of Lewis acid/Lewis
base interaction. Other descriptions of the bonding situation are: (i) donor bond; (ii)
coordinative covalent bond, often denoted by $L \rightarrow M$, where $L =$ ligand and $M =$ metal.
Complexes tend to be stable when the overall electron configuration at the metal centre (the
sum of metal valence electrons plus electron pairs provided by the ligands) is 18 (or 16 for
the late transition metals).

$$M + nL \rightleftharpoons [ML_n]^q \quad (n =$ number of ligands, $q =$ charge of the complex)

$$\frac{c(ML_n)}{c(M) \cdot c^n(L)} = K$$

K is the **stability constant** or **complex formation constant** ($pK = -\log K$); its inverse, K^{-1}, is
termed **dissociation constant**.

The average amount of iron in
the human body (70 kg) is ca. 5 g;
iron is thus the most abundant
transition metal in our organism.
About 70% of this amount is used
for oxygen transport and storage
(haemoglobin, myoglobin), almost
30% are stored in ferritins (iron
storage proteins), and about 1% is
bound to the transport protein
transferrin and to various iron-
dependent enzymes; cf. the rough
classification to the right.

Aqueous iron chemistry

The redox potential for the pair Fe$^{2+}$/Fe$^{3+}$ at pH = 7 demonstrates that FeII is easily oxidised to
FeIII under **aerobic** conditions (cf. also the tutorial on oxidation and reduction on p 16):

$$\text{Fe}^{2+} \rightleftharpoons \text{Fe}^{3+} + e^-; \quad E = -0.23 \, \text{V} \quad \text{at pH 7}$$

(compare: $2\text{H}_2\text{O} \rightleftharpoons \text{O}_2 + 4\text{H}^+ + 4e^-; \quad E \text{ (pH 7) = +0.82 V}$

$\text{NADH} + \text{H}^+ \rightleftharpoons \text{NAD}^+ + \text{2H}^+ + 2e^-; \quad E \text{ (pH 7) = -0.32 V}$

(NADH = nicotine-adenine-dinucleotide in its reduced form)
Hexaaquairon(III) ions are cationic Brønstedt acids:

\[
\begin{align*}
[\text{Fe(H}_2\text{O})_6]^{3+} + \text{H}_2\text{O} &\rightleftharpoons [\text{Fe(H}_2\text{O})_5\text{OH}]^{2+} + \text{H}_3\text{O}^+ & pK_{S1} = 2.2 \\
[\text{Fe(H}_2\text{O})_5\text{(OH)}]^{2+} + \text{H}_2\text{O} &\rightleftharpoons [\text{Fe(H}_2\text{O})_4\text{(OH)}_2]^{+} + \text{H}_3\text{O}^+ & pK_{S2} = 3.5 \\
[\text{Fe(H}_2\text{O})_4\text{(OH)}_2]^+ + \text{H}_2\text{O} &\rightleftharpoons [\text{Fe(H}_2\text{O})_3\text{(OH)}_3] = \text{Fe(OH)}_3\cdot\text{aq}) + \text{H}_3\text{O}^+ & pK_{S3} = 6.0
\end{align*}
\]

The formation of ferric hydroxide Fe(OH)$_3$·aq hence already starts in weakly acidic media. The protolytic reactions are accompanied by condensation reactions, leading to hydroxido- and oxido-bridged aggregates and finally to colloids and hardly soluble ferric oxide hydrates. The colloids can be spheroids of molecular mass M ca. $1.5\cdot10^5$ Da and ca. 70 Å diameter, or needles/rods ($M = 1.9\cdot10^6$, length up to 500 Å). The composition of these ironoxide hydrates correspond to that of the minerals FeO(OH) (goethite) and 5Fe$_2$O$_3$·9H$_2$O (ferrihydrite).

Mobilisation of Fe$^{3+}$ by siderophores

The extremely low solubility of Fe(OH)$_3$ [solubility product $L = 2\cdot10^{-39}$, solubility (pH 7) $l = 10^{-18}$ mol·l$^{-1}$], and thus the unavailability of iron in aqueous media under oxic conditions, has forced many groups of organisms to develop suitable systems for the mobilisation of iron. These systems, so-called siderophores (Greek for iron transporter), excreted by the organisms, are multidentate anionic ligands which form extremely stable complexes with Fe$^{3+}$ (complex formation constants up to 10^{50} M$^{-1}$). The functional groups of these ligands are, in many cases, catecholates (o-hydroxyquinolates), as in the case of enteroabctin, or hydroxamates (ferrooxamines and ferriochromes). The complexes are more or less globular, with the outer sphere furnished with hydrophilic groups (amide and ester groups), allowing for the water solubility and easy transport in the aquatic medium. Internalisation of the iron-loaded siderophore by the organism typically takes place by endocytosis; the cytosolic remobilisation of the iron either by reduction of Fe$^{3+}$ to Fe$^{2+}$ and recycling of the siderophore, or by oxidative destruction of the siderophore.
Tutorial: Coordination compounds (2): Ligand-field splitting and spin state

Example: FeII (d6): In an octahedral (O\textsubscript{h}) field, the degeneracy of the five d-orbitals is lifted. Depending on the strength of the ligand field, the ligand field stabilisation energy (i.e. the energy \textit{set free} as all of the electrons are accommodated in the orbitals of lower energy) can be (i) less and (ii) more than the energy \textit{needed} for electron pairing. In the case of (i), i.e. aqua ligands, a high-spin complex is formed; in the case of (ii), i.e. cyanido ligands, a low-spin complex is formed. Asymmetrically occupied orbital sets, as in the case of [Fe(H\textsubscript{2}O)\textsubscript{6}]2+, result in further stabilisation through symmetry lowering: Jahn-Teller distortion.

\[
\text{[Fe(H}_2\text{O)}\textsubscript{6}]2+
\]

\[
\text{[Fe(CN)}\textsubscript{6}]4-
\]

Jahn-Teller distortion

Energy

perturbation under D\textsubscript{4h}

weak perturbation under O\textsubscript{h}

spheric disturbance

undisturbed

Tutorial: Coordination compounds (3): Classification of ligands; and the chelate effect

Series of ligand strengths: Halides \(\approx\) \{S\} < \{O\} < \{N\} < CN− < NO+ \(\approx\) CO

Pearson classification (soft and hard): hard metal centres (usually early and transient transition metals in high oxidation states, e.g. Mo6+ and Fe3+) prefer hard ligand (i.e. more electronegative ones, such as oxygen-based donors), soft metal centres (late transition metals, e.g. Cu+) prefer soft ligands (such as cysteinate). There are \textit{many} exceptions from this “rule“.

Chelate effect: Stabilisation of a complex by multidentate ligands. The chelate effect is an entropic effect (high entropy = high disorder [increase of particle number]). Example: The complex formed between the siderophore enterobactin (ent6−, a hexadentate ligand) and Fe3+ is particularly stable: [Fe(H\textsubscript{2}O)\textsubscript{6}]3+ + ent6− \(\rightarrow\) [Fe(ent)]3+ + 6H\textsubscript{2}O.
Uptake, transport and storage of iron

Iron, when taken up with the food and processed in the mouth (chewing, admixture of saliva) is mostly present in its ferric (Fe$^{3+}$) form and thus gets into the gastro-intestinal tract as Fe$^{3+}$. In case of an intact milieu in the small intestines, ferric iron is reduced to its ferrous form (Fe$^{2+}$). Only in this oxidation state can iron be absorbed by the epithelium cells of the mucosa. For transfer to the blood serum, reoxidation to Fe$^{3+}$ is necessary. The oxidation Fe$^{2+}$ → Fe$^{3+}$ in the mucosa is catalysed by a copper enzyme (ceruloplasmin, containing 7 copper centres: Cu$^{+}$ → Cu$^{2+}$). The Fe$^{3+}$ ions are then taken up by apotransferrin (H$_2$Tf); simultaneously, carbonate is coordinated to iron. Fe$^{3+}$-Tf is the transport form for iron. The iron-loaded transferrin, Fig. 3) delivers iron to sites of potential use (e.g. incorporation into protoporphyrin IX and generation of haemoglobin), or stored in iron storage proteins (ferritins). The delivery of iron affords reduction from the ferric to the ferrous state; a reductant employed here is ascorbate (vitamin C):

- **uptake:** $\text{H}_2\text{Tf} + \text{Fe}^{3+} + \text{HCO}_3^- \rightarrow [(\text{Tf})\text{Fe}^{\text{III}}(\text{CO}_3)]] + 3 \text{H}^+$
- **release:** $[(\text{Tf})\text{Fe}^{\text{III}}(\text{CO}_3)]^+ + e^- + 3 \text{H}^+ \rightarrow \text{H}_2\text{Tf} + \text{HCO}_3^- + \text{Fe}^{2+}$
- **usage:** $\text{Fe}^{2+} + (\text{protoporphyrin-IX}) + \text{globin} \rightarrow \text{haemoglobin} + 2\text{H}^+$

The daily absorption rate of iron supplied by food amounts to ca. 1 mg. Within our organism, about 40 mg of Fe are mobilised and transported by Tf into the spinal marrow for the haemoglobin synthesis, and about 6 mg are stored within or mobilised from the ferritins (vide infra). Transferrin is a glycoproteid of molecular weight 80 kDa (containing ca. 6% carbohydrate), having available two almost equivalent binding sites for iron(III), in the C- and N-terminal lobes, respectively. The pK (K = stability constant; see inset on p. 5) at pH 7.4 (the pH of blood) is -20.2. Transferrin is also an effective transporter for other tri- and divalent metal cations, and even for anions (e.g. vanadate). Since its loading capacity for iron commonly is only ca. 40%, other ions can be transported simultaneously.

![Figure 3: The Fe$^{3+}$-carbonate-transferrin complex. Coordination of carbonate(2-) is supported by salt interaction with an arginine residue in the protein pocket.](image)

Ferritins (Fig. 4) are iron storage proteins, built up of a hollow protein sphere (apo-ferritin, $M = 450$ kDa, 24 subunits of 163 amino acids each) with an outer diameter of 130 and an inner diameter of 70 Å. The inner surface of this capsule is lined with carboxylate functions, which can coordinate Fe$^{3+}$. Up to 4500 Fe$^{3+}$ can be taken up. The various iron centres are connected by bridging oxido and hydroxido groups very much as in the colloidal form of ferric hydroxide (see above) or the mineral goethite. The overall composition of the iron nucleus is $8\text{FeO(OH)} \cdot \text{FeO(H}_2\text{PO}_4)$. Channels of threefold symmetry and a width of 10 Å allow for an exchange of Fe$^{3+}$ between the interior and exterior. For the primary uptake process, iron has to be in the oxidation state +II. Its transport along the channels and built-in into the core is accompanied by oxidation to the +III state:
2Fe^{2+} + O_2 → Fe^{3+}(\mu-O_2)Fe^{3+}; \quad Fe^{3+}(\mu-O_2)Fe^{3+} + 2H_2O + 2[H] → 2FeO(OH) + 4H^+

Figure 4. The iron storage protein ferritin. Left: Apoferritin (the inside of the hollow sphere is lined with carboxylates); centre: subunit structure and channels of C_2, C_3 (for iron exchange with the surroundings) and C_4 symmetry; right: one of the subunits.

Ferritins – like many other proteins – exhibit high symmetry. High symmetry (also found with higher organised forms of life such as viruses, bacteria and even proteins in plants and animals) makes less reactive – as a consequence of minimised overall polarity – and thus has “a protective function”. For some basic considerations on symmetry, also of relevance in the context of the electronic configuration of metal ions in coordination compounds (and thus for oxygen binding by haeme; next chapter), see the inset on page 10.

3. Oxygen transport

Dry air contains 20.96 vol.-% of O_2; 1 L of water at 20 °C can dissolve 31 ml of O_2; with increasing temperature, the solubility decreases (23 ml at 40 °C). In the pulmonary alveoli, O_2 is taken up by haemoglobin (Hb, M = 65 kDa; Fig. 5); at saturation, 1 L of blood can dissolve ca. 200 ml of oxygen. Simultaneously, hydrogen carbonate is converted to carbonic acid, which in turn is catalytically degraded into CO_2 and H_2O (by the zinc enzyme carbonic anhydrase):

Hb·H^+ + O_2 + HCO_3^- ⇌ Hb·O_2 + H_2CO_3
Desoxi-Hb Oxi-Hb

H_2CO_3 ⇌ H_2O + CO_2

Figure 5. Left: Schematic view of haemoglobin (a tetramer, mainly α_2β_2 in adults; there is one haeme group per subunit). Myoglobin is a monomer. Right: Affinity of haemoglobin and myoglobin to oxygen. The O_2 partial pressure at saturation (100%) is ca. 100 Torr (ca. 0.13 bar = 13 kPa). The graphs apply to the normal blood pH of 7.35 and temperature of 37 °C. Decreasing the pH and increasing the temperature decreases the affinity for O_2.
Digression: Symmetry operations

Unit operation

Rotation around 4-fold axis (90°) \((C_4)^4 = I\)

Rotation around 2-fold axis (180°) \((C_2)^2 = I\)

Rotation around diagonal 2-fold axis (180°)

Reflection at horizontal mirror plane

Reflection at dihedral mirror plane \((\sigma_d)^2 = I\)

Reflection at vertical mirror plane \((\sigma_v)^2 = I\)

Rotatory reflexion

Inversion \((i)^2 = I\)
After transport of O_2 by haemoglobin in the blood stream, the oxygen is transferred to tissue myoglobin (Mb). As shown in Fig. 5, Mb has a higher affinity to O_2 than Hb.

In the desoxy form of Hb, Fe^{2+} is in its high-spin state (cf. the inset on p. 7, top) and thus exhibits a paramagnetism corresponding to four unpaired electrons. The diameter of high-spin Fe^{2+} is 92 pm; the Fe^{2+} ion thus is too large to fit into the space left by the four N-functions of the protoporphyrin. Actually, Fe^{2+} is displaced from the plane spanned by the porphyrin by 40 pm towards the proximal His; cf. Fig. 6; resulting in a watchglass bulge of the porphyrin, i.e. a tensed situation. Consequently, desoxy-Hb is termed T (for tensed) form. On uptake of oxygen, the iron spin state converts to low-spin, resulting in a reduction of its diameter to 75 pm (Fe^{2+}, no unpaired electrons) or 69 pm (Fe^{3+}, 1 unpaired electron), respectively. The iron ion now moves into the plane of the porphyrin (R form; $R = \text{relaxed}$). Oxi-Hb is diamagnetic. If iron remains in its ferrous state, overall diamagnetism can only be achieved in case the coordinated oxygen converts from the paramagnet triplet state (in free O_2) to the diamagnetic singlet state (in Oxi-Hb) (cf. also box below). Alternatively, the uptake of O_2 can occur in the sense of an oxidative addition, i.e. $Fe^{2+} + O_2 \rightarrow Fe^{3+}-O_2$. In that case, the unpaired electron of the ferric ion and the unpaired electron of superoxide have to couple in order to provide the overall diamagnetism. The overall situation is conveniently described in terms of a resonance hybrid:

![Resonance Hybrid of $Fe^{2+}O$ and Fe^{3+-O_2}]

Tutorial: Oxygen

One commonly distinguishes three oxygen modifications: Singlet-O_2 (1O_2; high energy content, unstable, diamagnetic), triplet-O_2 (3O_2, stable, biradical and hence paramagnetic), and ozone (O_3; toxic; very reactive [strong oxidant]). [A high pressure modification, (O_2)$_4$, is also known]

Formation of ozone in the troposphere (ozone smog): $NO + O_2 \rightarrow NO_2 + O$; $O_3 + O \rightarrow O_3$; $NO_2 + h\nu \rightarrow NO + O$.

Stratospheric ozone: Stratospheric ozone is an effective filter for “hard“ UV (responsible for cancers of the skin):

\[O_2 + h\nu (\lambda < 240 \text{ nm}) \rightarrow 2O; \quad O_2 + O \rightarrow O_3\]

Radicals, e.g. NO, degrade ozone catalytically (“ozone whole“):

\[NO + O_3 \rightarrow NO_2 + O_2, \quad NO_2 + O \rightarrow NO + O_2\]

Other radicals can do the same job, e.g. Cl atoms, which are liberated from chloro fluoro alkanes (CFC) under stratospheric conditions.

Reduction of O_2 produces superoxide ($O_2^•$) or peroxide ($O_2^{2−}$), both of which are strong oxidants and physiologically harmful (reactive oxygen species, ROS). To cope with these oxidants, the body holds ready catalases ($H_2O_2 \rightarrow H_2O + O_2$) and superoxidedismutases ($2O_2^• + 2H^+ \rightarrow H_2O_2 + O_2$).

Another ROS species is the hydroxyl radical, formed, e.g. by the Fenton reaction:

\[Fe^{2+} + H_2O_2 + H^+ \rightarrow Fe^{3+} + H_2O + HO^•\]
Transport, formation and degradation of hydrogen carbonate

Oxygen is finally reduced to water in the mitochondrial respiratory chain (ch. 4). The reduction equivalents come from organic compounds (such as glucose), which are degraded to CO₂. CO₂ is converted enzymatically to hydrogen carbonate according to CO₂ + OH⁻ → HCO₃⁻, most of which is extruded out of the erythrocytes (concomitantly, chloride is taken up) and transported, via the blood plasma, to the pulmonary aveoli, where carbonic acid is formed through the reaction with Hb·H⁺, coupled with binding of O₂ to haemoglobin. Carbonic acid finally is enzymatically split into CO₂ und H₂O. The enzyme catalysing the formation and degradation of hydrogen carbonate/carbonic acid is called carbonic anhydrase (CA). CA has a molecular weight of 29.7 kDa and contains Zn²⁺ in its active centre. Zn²⁺ is coordinated to three histidine residues plus an aqua ligand (in its resting state) or a hydroxido ligand (in its active state). A histidine close to the active centre participates in the proton shuttle. For the catalytically conducted mechanism see Fig. 7.

Figure 6. Desoxy and oxy forms of haemoglobin/myoglobin. The central ligand system, protoporphyrin IX, is shown here without the characteristic ring substituents.

Figure 7. Mechanism of the formation of hydrogen carbonate catalysed by carbonic anhydrase. The reverse reaction (formation of CO₂ form carbonic acid) is also catalysed by this enzyme.
Inactivation of haemoglobin

Oxygen binding to haemoglobin can only occur if the Fe\(^{2+}\) site directed towards the distal His is accessible. There are specific mutations where this is not the case, such as in the so-called Boston-Hb, where the distal His is replaced by Tyr, the tyrosinate-oxygen of which tightly coordinates to the iron site and thus blocks off access of O\(_2\). Carbon monoxide exerts a comparable effect, which is responsible for the toxicity of CO. CO is bound 220 times more strongly to Fe\(^{2+}\) than O\(_2\): 0.25% of CO in air, i.e. the CO contents of inhaled cigarette smoke of 20 cigarettes per day, block off about 25% of the oxygen binding capacity of Hb. NO (formed by reduction of nitrite) has a comparable effect.

The naturally occurring mutant Glu6Ala (glutamate at position 6 exchanged for alanin) causes sickle cell anaemia, a deformation of the red blood cells by polymerisation of the globin subunits of Hb. The blood of people suffering from sickle cell anaemia has restricted O\(_2\) capacity. These people are, however, immune against malaria, which has led, by selection, to a high percentage of anaemic individuals amongst the populations of some tropical African regions.

A certain amount of haemoglobin is consistently oxidised to methaemoglobin (MetHb) by oxidants such as peroxide, hyperoxide and OH radicals:

\[
\text{Hb(Fe}^{2+}\text{) + H}_2\text{O} \rightarrow \text{MetHb(Fe}^{3+}\text{-OH}) + \text{e}^- + \text{H}^+
\]

Met-Hb, in which the second axial position is blocked by OH\(^-\) is, however, consistently "repaired" by methaemoglobin-reductase (containing NADH as cofactor).

Oxygen transport by haemocyanins and haemerythrin

Hemocyanins are oxygen transport proteins occurring in arthropods (spiders, crabs, lobsters, ...) and molluscs (snails, squids, ...). They contain a dinuclear copper centre per subunit. Molecular weights vary from 450 kDa (arthropods, subunits of 75 kDa) to 9 MDa (molluscs, subunits of 50-55 kDa). The oxygen is reversibly taken up by oxidative addition:

\[
\text{O}_2 + \{\text{Cu}^{2+}_2\} \rightleftharpoons \{\text{Cu}^{2+}(\mu-\text{O}_2^{2-})\text{Cu}^{2+}\}
\]

The peroxide thus formed coordinates in the unusual side-on bridging mode, \(\mu-\eta^2:\eta^2\); Fig. 8).

![Figure 8](image)

Figure 8. Reversible uptake and release of oxygen by haemocyanins.

An oxygen transport protein occurring in certain non-segmented worms (the *sipunculid* family) is haemerythrin, consisting of eight subunits (overall molecular weight 108 kDa), each of which containing a dinuclear iron centre; Fig. 9. In the desoxy form, these are ferrous centres, bridged by OH\(^-\), an aspartate and a glutamate. One of the iron centres is additionally
coordinated to three histidines, the other one to two His, leaving one of its coordination sites vacant for the access of oxygen. As in the case of haemocyanins, oxygen is coordinated in the sense of an oxidative addition, i.e. the ferrous centres become ferric centres, and the oxygen is converted to peroxide. Concomitantly, the bridging hydroxide converts to a μ-oxido group by protonating the peroxide to hydroperoxide, HO_2^-.

![Figure 9. Desoxy form (left) and oxy form (right) of haemerythrin.](image)

4. The mitochondrial respiratory chain

The overall reaction can be represented in the following way:

\[
\text{O}_2 + \{\text{CH}_2\text{O}\} \rightarrow \text{HCO}_3^- + \text{H}^+ + \text{energy (commonly stored in the form of ATP)}
\]

or:

\[
\text{O}_2 + 2(\text{NADH} + \text{H}^+) \rightarrow 2\text{H}_2\text{O} + 2\text{NAD}^+
\]

The free enthalpy of reaction (ΔG) of this reaction amounts to -217 kJ/mol, the redox potential to 1.14 V. The reduction equivalents are delivered by, e.g., products formed in the course of the degradation of glucose, such as lactate:

\[
\text{H}_3\text{C} - \overset{\text{C}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{H}}{\text{CO}}}}} - \text{CO}_2^- + \text{NAD}^+ \rightarrow \text{H}_3\text{C} - \overset{\text{C}}{\overset{\text{O}}{\overset{\text{O}}{\overset{\text{H}}{\text{CO}}}}} - \text{CO}_2^- + \text{NADH} + \text{H}^+
\]

Lactate Pyruvate

The reduction of O_2 to H_2O takes place step by step in order to prevent damage to cellular constituents by the burst of energy liberated in a single step. The reaction cascade is termed respiratory chain, which takes place in the mitochondria, and serves the generation of energy. For the overall process, cf. Fig. 10. For some general remarks on oxidation and reduction, see inset on p. 16.

Step 1: Primary acceptor for two reduction equivalents delivered by NADH is an iron-sulphur protein belonging to the [4Fe,4S] ferredoxin family (for a systematic treatment of ferredoxins see below). Such an iron-sulphur cluster can accept and deliver just one electron per cluster. The charge is delocalised over the complete cluster system; the mean oxidation state of iron is 2.5 in the oxidised and 2.25 in the reduced form.

Step 2: Electron acceptor for the ferredoxin is a quinone (so-called ubiquinone, containing a polyisoprene side-chain in position 2), a two-electron acceptor which becomes reduced to the hydroquinone.

Step 3: Another iron-sulphur protein, the Rieske protein (or Rieske centre) then takes over. Rieske proteins are two-centre iron proteins with one of the irons carrying two His (the other one is coordinated to 2 Cys and two bridging $\text{S}^\text{2-}$). In the oxidised form, both iron ions are in...
the +III state, in the reduced form, the ferric iron coordinated to four sulphur functions turns to the ferrous state.

Figure 10. Reaction cascade in the mitochondrial respiratory chain (shortened).

Step 4: The reduction equivalents are now transferred to cytochrome-b (Cyt-b) and further to cytochrome-c (Cyt-c). In these haeme-type electron transporters (for details see below), iron switches between the ferric and ferrous state.

Step 5: The reduced (FeII) form of Cyt-c is re-oxidised by cytochrome-c oxidase, an enzyme that contains 5 redox active centres: 2 haeme type FeII/III (Cyt-a and Cyt-a3), a dinuclear cupper centre \(\{\text{CuII}_2/\text{CuI.5}_2\} = \text{CuA}\) and a mononuclear \(\text{CuI/II} = \text{CuB}\) centre. In addition, there are two structural metal centres (Zn2+ und Mg2+).

Step 6: Cytochrome-c oxidase (Cyt-c-Ox) can take up 4 electrons from 4 Cyt-c. These electrons are employed for the reduction of \(\text{O}_2\) to \(\text{H}_2\text{O}\). 8 protons are handled in this process: 4 of the protons are needed to form water; 4 additional protons are translocated across the membrane (from the intra- to the extra-mitochondrial space); i.e. Cyt-c-Ox also works as a proton pump. Activation and reduction of the oxygen (via peroxide) occurs between the adjacent Cyt-a3 and CuB centres. For the organisation of Cyt-c-Ox see Fig. 13.

\[
4\text{Cyt-c(Fe}^{2+}] + [\text{Cyt-c-Ox}]_{\text{ox}} \rightarrow 4\text{Cyt-c(Fe}^{3+}] + [\text{Cyt-c-Ox}]_{\text{red}}
\]
\[
[\text{Cyt-c-Ox}]_{\text{red}} + \text{O}_2 + 8\text{H}^+_{\text{in}} \rightarrow [\text{Cyt-c-Ox}]_{\text{ox}} + 2\text{H}_2\text{O} + 4\text{H}^+_{\text{ex}}
\]

The iron-sulphur proteins

The more important (in the sense that they are more generally used) members of this family are collated in Fig. 11. (1) Rubredoxins contain one iron centre tetrahedrally coordinated to four cysteinates. (2) [2Fe,2S] ferredoxines, with two iron centres, constitute two edge-bridged FeS4 tetrahedra. The bridging sulphur functions are inorganic sulphide \(\text{S}^2\), the remaining ligands are cysteinate. (3) [4Fe,4S] ferredoxins have a cubane structure. The four trebly bridging functions are again sulphide, also termed labile sulphur because they can be
converted to volatile H₂S with acids. The mean oxidation state in the reduced form is 2.25, in the oxidised form 2.5, the redox potential is typically around -200 mV. (4) HiPIPs (High Potential Iron Proteins) are identical to the [4Fe,4S] ferredoxins in as far as the core structure is concerned. However, the mean oxidation state in the reduced form is 2.5, in the oxidised from 2.75, and the redox potential is typically around +300 mV. Along with these “classical” iron-sulphur clusters, others are known, in which one iron centre is missing ([3Fe,4S] ferredoxins), or where two [4Fe,4S] ferredoxins form double-cubanes, or where a fifth ligand (Ser or His) is coordinated to one of the iron centres. The Rieske proteins have already been mentioned above; the angle N-Fe-N is ca. 90°, i.e. there is strong distortion from tetrahedral symmetry for this specific iron.

![Diagram of iron-sulphur proteins](image)

Figure 11. The iron centres of the classical (and more frequently used) iron-sulphur proteins. SR = cysteinate(1-).

Tutorial: Oxidation and reduction

An oxidation corresponds to a removal of electrons (increase of the oxidation number), reduction correspondingly to a transfer of electrons to a substrate (decrease of the oxidation number). Oxidation and reduction are coupled; an example is the oxidation of ferrous to ferric iron, coupled with the reduction of oxygen to water:

\[
2\text{Fe}^{2+} + \frac{1}{2}\text{O}_2 + 2\text{H}^+ \rightarrow 2\text{Fe}^{3+} + \text{H}_2\text{O}
\]

In principal, all redox reactions are equilibrium reactions. The direction is determined by the redox potentials of the two pairs of underlying electron transfer processes. Standard redox potentials \(E^0 \) are tabulated; standard conditions are: 298 K, 10^5 Pa, \(c = 1 \text{ mol/l} \):

\[
\begin{align*}
\text{Fe}^{3+} + e^- & \rightleftharpoons \text{Fe}^{2+}; \quad E^0 = +0.771 \text{ V} \\
\frac{1}{2}\text{O}_2 + 2e^- + 2\text{H}^+ & \rightleftharpoons \text{H}_2\text{O}; \quad E^0 = +1.229 \text{ V}
\end{align*}
\]

Recalculation of the potential for real concentrations, \(E^c \), is achieved with the Nernst equation:

\[
E^c = E^0 + \left(\frac{0.059}{n}\right)\log(c_{\text{Ox}}/c_{\text{Red}})
\]

where \(n \) is the number of transferred electrons; \(c_{\text{Ox}} \) and \(c_{\text{Red}} \) the concentrations of the oxidised and reduced forms, respectively. In particular, the pH dependence has to be taken into account: At pH 7, \((c(\text{H}^+) = 10^{-7}) \), \(E^c \) for the pair H₂/H⁺ is -0.414 V \((E^0 = 0)\), for \(\text{H}_2\text{O}/\text{O}_2 \) +0.815 V.
Cytochromes and cytochrome-c oxidase

Cyt-b und Cyt-c, and the cytochromes-a and -a3 of the cytochrome-c oxidase contain haeme type iron centres. They are distinct by their substitution pattern at the porphyrin ring and the axial ligands; see Fig. 12. They transfer electrons, moving between the iron oxidation states +II and +III. Cytochromes may also attain other than simple electron transfer functions. An example is cytochrome P450, an oxygenase in which, during turn-over, iron passes through the oxidation state +IV (and, perhaps, +V).

Figure 12. The active centres of selected haeme-type proteins. For Cyt-P450, see the chapter on oxigenases.

Cytochrome c:

- **Cyt-a:** \(R^1 = \text{vinyl}, R^2 = C_{17}H_{34}OH, R^3 = \text{formyl} \)
- **Cyt-b:** \(R^1 = R^2 = \text{vinyl}, R^3 = \text{methyl} \)
- **Cyt-c:** \(R^1 = CH(CH_3)_2CH_2C(O)NH, R^2 = CH_3 \)
- **Cyt P450:** \(R^1 = R^2 = \text{vinyl}, R^3 = \text{methyl} \)

Myoglobin and Haemoglobin:

- **Mb and Hb:** \(R^1 = R^2 = \text{vinyl}, R^3 = \text{methyl} \)

Figure 13. Organisation of the redox-active centres of cytochrome-c oxidase (left). Oxygen activation and reduction occurs at the dinuclear Cu\(^{B}\)⋯Cyt-a\(_3\) pair (see expansion to the right).
5. Photosynthesis

Photosynthesis (assimilation) and respiration (dissimilation) are complementary processes. Photosynthesis results in reductive carbon fixation and production of oxygen, energy driven by light energy, $h\nu$:

$$h\nu \quad \text{CO}_2 + 2\text{H}_2\text{O}^* \rightarrow \{\text{CH}_2\text{O}\} + \text{O}_2^* + \text{H}_2\text{O}$$

Carbon dioxide is reduced, in a 4e⁻ reduction, to $\{\text{CH}_2\text{O}\}$ (symbolising a carbohydrate such as 1/6 of glucose). Reducing agent is water, which is oxidised to O_2. Instead of resorting to light as an energy source, chemical energy (energy liberated in the course of a chemical reaction) can be employed, and sources for carbon other than CO_2, e.g. CO or acetate, can be used. Depending on the energy and the carbon source, one distinguishes the following categories:

- **Light energy:** phototrophic
- **Chemical energy:** chemotrophic
- **CO_2 as C-source:** autotrophic
- **Other C-sources:** heterotrophic

Green plants, cyanobacteria and other photosynthetically active bacteria, and protozoa containing chlorophyll produce bio-mass photo-autotrophically. A 100 year old beech tree produces about 1000 l of O_2 and 12 kg of carbohydrates per day (this corresponds to 100 ml of O_2 and 1.2 g of glucose per 1 m^2 of foliage). The major part of bio-mass is, however, produced by chemotrophic microorganisms. Examples for chemical processes supplying energy are:

- $\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^-$
- $\text{H}_2 \rightarrow 2\text{H}^+ + 2e^-$
- $\text{HS}^- + 4\text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 9\text{H}^+ + 8e^-$
- $\text{Mn}^{2+} + 3\text{H}_2\text{O} \rightarrow \text{MnO(OH)}_2 + 4\text{H}^+ + 2e^-$

In the photosynthetic process carried out by plants, one distinguishes between the light reaction and the light-independent (or dark) reaction on the one hand and, within the light reaction, between photosystems I and II (PSI and PSII, also referred to as light harvesting complexes LHC) on the other hand:

Light reaction:

PSII: $\text{P}_{680} + h\nu \rightarrow [\text{P}_{680}]^+ + e^-$ (via phaeophytin, a "chlorophyll" depleted of Mg^{2+}):

$$2[\text{P}_{680}]^+ + \text{H}_2\text{O} \rightarrow 2\text{P}_{680} + \frac{1}{2}\text{O}_2 + 2\text{H}^+ \text{ (catalysed by water oxidase)}$$

e^- transfer chain from PSII to PSI (Fig. 14)

PSI: $\text{P}_{700} + h\nu \rightarrow [\text{P}_{700}]^+ + e^-$

$$[\text{P}_{700}]^+ + e^- \rightarrow \text{P}_{700}$$

$\text{NADP}^+ + 2e^- + 2\text{H}^+ \rightarrow \text{NADPH} + \text{H}^+$ (catalysed by [2Fe,2S])

Dark reaction: $2(\text{NADPH} + \text{H}^+) + \text{CO}_2 \rightarrow \{\text{CH}_2\text{O}\} + 2\text{NADP}^+ + \text{H}_2\text{O}$ (energy driven by ATP)

The photosystems are collectives of pigment molecules (ca. 200), mainly chlorophyll-a and -b, carotinoids, anthocyanes and xanthophylls. These pigments act as collectors over the complete spectrum of the (visible) sun light. The energy thus collected is transferred to the reaction centres, which represent specific molecules of chlorophyll-a, termed P_{680} in PSII, and P_{700} in PSI; see Fig. 15.
The *water oxidase* (oxygen evolving centre, OEC), which catalyses the oxidation of water via P₆₈₀, contains 5 metal centres at its active site. Four of these metal ions (3 Mn³⁺/⁴⁺ and one Ca²⁺) form, together with 4 O²⁻, a cubane-like cluster (Fig. 16). In Fig. 16, the (assumed) catalytic process is also shown. During turn-over, the four manganese centres change between the oxidation states +IV to +III step by step in the 4-electron oxidation of 2 molecules of water.

![Diagram of water oxidase](image)

Figure 14. Simplified representation of the electron transport chain between PSII and PSI.

Figure 15: Chlorophylls
Plastocyanin, at the end of the electron transfer chain between PSII and PSI belongs to the category of ‘blue copper proteins’, or type I Cu proteins. In these Cu proteins, Cu$^{1+/2+}$ is coordinated in a flat trigonal-bipyramidal fashion by two Cys’ and one His, and – in the axial position at a rather long distance of 2.9 Å – methionine. The intense blue colour of the oxidised (Cu$^{2+}$, d9) form comes about by a ligand-to-metal charge transfer (LMCT), i.e. transfer of electron density from non-bonding orbitals of the coordinated Cys-S into the 3d ‘hole’ of Cu$^{2+}$. While charge transfer within the d-d system of a metal ion is parity (Laport) forbidden, and the corresponding absorption bands hence are weak in intensity (see, e.g., [Cu(H$_2$O)$_6$]$^{2+}$), LMCT transitions are allowed and thus very intense.

Disgression: Systematics of copper proteins

Type I (Blue Cu-proteins): trigonal coordination geometry; ligands: 2 Cys(1-), 1 His, 1 weakly bonded Met. Strong LMCT at 600 nm; small EPR-spectroscopic hyperfine coupling constant ($\mathcal{A} = 5\cdot10^{-4}$ cm$^{-1}$). Function: e$^-$ transfer; Example: Plastocyanin in the e$^-$ transfer chain PSII\rightarrowPSI.

Type II: Tetragonal coordination geometry; ligands: His, Tyr(1-), H$_2$O, no Cys. “Normal” optical behaviour (d-d transitions); normal EPR patterns ($\mathcal{A} = 18\cdot10^{-4}$ cm$^{-1}$). Function: Redox reactions; Examples: Galactoseoxidase ($\text{RCH}_2\text{OH} \rightarrow \text{RCHO} + 2\text{H}^+ + 2\text{e}^-$), CuZn-superoxidedismutase ($2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{O}_2 + \text{H}_2\text{O}_2$).

Type III: Contain 2 cooperating Cu centres; trigonal coordination geometry; ligands: 3 His per Cu. Intensely blue in the oxidised form ($\text{O}_2^2-\rightarrow\text{Cu}^{2+}$ LMCT); no EPR signal (antiferromagnetically coupled). Function: Transport and transfer (to a substrate) of oxygen; examples: haemocyanin, Fig. 8; tyrosinase (Tyr + $\frac{1}{2}\text{O}_2 + 2\text{e}^- \rightarrow \text{DOPA}$).

Nitratereductase contains type II (substrate activation) and type I Cu centres (e$^-$ transfer)

Ceruloplasmin, important for the absorption of iron, is a Cu protein containing 7 Cu centres representing types I, II and III. *Nitritereductase* contains type II (substrate activation) and type I Cu centres (e$^-$ transfer)

Others: e.g. CuA und CuB in cytochrom-c oxidase; Fig. 13.
6. Hydrogenases, oxygenases, oxidoreductases, peroxidases and dismutases

Overview

Hydrogenases (often associated with the cofactors NADH or FADH₂)

\[\text{H}_2 \rightleftharpoons 2\text{H}^+ + 2\text{e}^- \quad \text{more correct: } \text{H}_2 \rightleftharpoons \text{H}^+ + \text{H}^- \text{ (followed by: } \text{H}^- \rightarrow \text{H}^+ + 2\text{e}^-) \]

May be coupled with the transfer/abstraction of hydrogen to/from a substrate (hydrogenation/dehydrogenation):

\[\text{substrateH}_2 \rightleftharpoons \text{substrate} + 2\text{H}^+ + 2\text{e}^- \]

Oxidoreductases generally catalyse oxidations (electron abstraction) and/or reductions (electron delivery), such as the iron-sulphur proteins or the cytochromes.

Some oxidoreductases use oxygen for the dehydrogenation of a substrate (oxidases) or water for the hydrogenation of a substrate (reductases):

\[\text{SubstratH}_2 + \frac{1}{2}\text{O}_2 \rightleftharpoons \text{Substrat} + \text{H}_2\text{O} \]

Oxygenases transfer/insert, usually starting from oxygen O₂, oxo groups (O²⁻) to/into a substrate:

\[\text{substrate} + \text{O}_2 \rightleftharpoons \text{substrateoxide/-hydroxide} \]

often coupled to: \(\frac{1}{2}\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2\text{O} \)

The reverse process, i.e. the removal of O²⁻ from a substrate, is catalysed by deoxygenases. Substrates can be organic in nature (RH \(\rightarrow \) ROH; (CH₃)₂S \(\rightarrow \) (CH₃)₂S=O), or inorganic (NO₃⁻ \(\rightarrow \) NO₂⁻).

Peroxidases employ H₂O₂ for oxygenation:

\[\text{substrate} + \text{H}_2\text{O}_2 \rightarrow \text{substrateoxide/-hydroxide} + \text{H}_2\text{O} \]

Dismutases disproportionate oxygen species with the oxygen in the oxidation states –I (peroxide) and -1/2 (superoxide):

Catalases: \(\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \frac{1}{2}\text{O}_2 \)

Sub steps: \(\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}^+ + 2\text{e}^- \) (oxidation) \(\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{H}_2\text{O} \) (reduction)

Superoxidedismutases: \(2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \)

Sub steps: \(\text{O}_2^- \rightarrow \text{O}_2 + \text{e}^- \) (oxidation) \(\text{O}_2^- + \text{e}^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 \) (reduction)

Iron-only hydrogenase

This enzyme catalyses the charge separation in the H₂ molecule via polarisation between the NH function of the bridging aminatedithiolate and one of the iron centres, and finally the bond cleavage to form a hydridic Fe-H⁻ and a protic R₂NH₂⁺ intermediate. Electrons from the H⁻ are then transferred off via a [4Fe,4S] ferredoxins in direct contact with the hydrogenase.
Nitritereductase

This enzyme catalyses the deoxygenation of nitrite NO$_2^-$ to nitrogenmonoxide NO via a one-electron reduction, one of the focal steps in dinitrification (see ch. 7). The enzyme is built up of three identical subunits. Each of these subunits contains a catalytic type-II Cu centre (for the activation of nitrite) and a type-I Cu centre for electron transfer (reduction of nitrite) [see inset on p. 20 for the classification of copper enzymes). Reaction steps (cf. Fig. 17):

1. Exchange of water for nitrite/nitrite activation (at {Cu-II})
2. Formation of nitrosyl: NO$_2^-$ + 2H$^+$ → NO$^+$ + H$_2$O
3. NO$^+$ + e$^-$ → NO (by {Cu-I})
4. Reestablishment of the starting situation by exchange of NO for H$_2$O

![Diagram of reaction catalysed by nitritereductase](image)

Oxigenases

Cytochrome P$_{450}$ is an oxygenase belonging to the haeme-type proteins. Axial ligands are a cysteinate and – in the resting state – water. In the active state, the position occupied by water is free. Cyt-P$_{450}$ detoxifies hydrophobic substrates (such as benzene) in the liver by conversion to hydrophilic compounds (such as phenol) which are than secreted. The overall reaction can be formulated as shown:

\[
RH + O_2 + 2H^+ + 2e^- \rightarrow ROH + H_2O
\]

The substrate RH is bonded by hydrophobic interaction into the protein pocket close to the active centre of the active form of the enzyme. The course of reaction is illustrated in Fig. 18. In the first step, FeIII is reduced to FeII, followed by oxidative addition of O$_2$ (FeII + O$_2$ → FeIII-O$_2$), i.e. O$_2$ is reduced to superoxide, and further – by an external e$^-$ source – to peroxide: FeIII-O$_2^-$ + e$^-$ → FeII-O$_2^2^-$. In the succeeding step, FeIII transfers 2 electrons to the peroxy ligand. One of the oxo groups is released and trapped by two protons to form water. The other oxo group remains coordinated to iron. The intermediate thus formed can be formulated with FeV or FeIV: {O=FeV} ↔ {O=FeIV}$^{+\ast}$, in the latter formulation (with FeIV) as a radical cation, with the radical character being dislocated over the oxygen and part of the protein matrix. In the final step, a hydrogen atom of the substrate is transferred to the ferryl oxygen, and the {OH} transferred back to the substrate radical:
Tyrosinase and catecholoxidase: These two closely related enzymes contain type III copper centres (see inset on p. 20) and thus resemble the haemocyanins (ch. 3). The homology of the amino acid sequence is, however, restricted to the direct surroundings of the copper centres. Activation of oxygen by tyrosinase and catecholoxidase compares to that of haemocyanin, except that is irreversible:

$$2\text{Cu}^I + \text{O}_2 \rightarrow \text{Cu}^{II}(\text{O}_2^{2-})\text{Cu}^{II}$$

One of the histidine ligands on one of the Cu centres in tyrosinase can be weakened to allow for attachment of the substrate tyrosine. Tyrosinase catalyses the oxygenation of tyrosine to dopa (D-dihydroxyphenylalanine; precursor for the neurotransmitter dopamine, and for adrenaline), catecholoxidase further oxidises dopa to the respective quinone (Fig. 18). These reactions are followed by further dehydrogenation to form indolquinone and finally melanin. Melanin, a very complex compound, is the dark pigment formed as freshly broken fruits (like apples or bananas) or vegetable (like potatoes) are exposed to air. Melanin is also the dark pigment responsible for the suntan, or present in the brown beauty patches and in melanomas.

Figure 18. Reactions which are catalysed by tyrosinase/catecholase.
Oxigenases/deoxygenases containing the molybdopterin cofactor, Fig. 19.

[Diagram of Oxigenases/deoxygenases containing the molybdopterin cofactor]

Figure 19. Oxidised form of the molybdopterin cofactor (upper right) of the sulphite reductase family. X usually is Cys\(^{-}\). Molybdopterin transfers oxido groups to a substrate (shown) or off a substrate.

An example is the (dissimilatory) nitrate reductase:
\[
\text{NO}_3^- + 2e^- + 2H^+ \rightarrow \text{NO}_2^- + H_2O
\]

Vanadate-dependent haloperoxidases from marine algae catalyse the oxidation of halide (Hal\(^{-}\)) to a Hal\(^{+}\) species such as hypohalous acid. Oxidant is hydrogen peroxide. The Hal\(^{+}\) species halogenates organic substrates non-enzymatically. For the mechanism, see Fig. 20.

Hal\(^{-}\) + H\(_2\)O\(_2\) + H\(^{+}\) \rightarrow HalOH + H\(_2\)O

HalOH + RH \rightarrow RHal + H\(_2\)O

Figure 20. Active centre of vanadate-dependent haloperoxidase (left), and mechanism of the enzymatic formation of hypobromous acid from bromide (right).
Cu,Zn-Superoxidedismutase contains a catalytically active type-I copper centre and a structural zinc centre, linked by bridging His; Fig. 21. The enzyme catalyses the disproportionation (dismutation) of superoxide to hydrogenperoxide and oxygen.

![Active centre of Cu,Zn-superoxidedismutase](image)

Figure 21. Active centre of Cu,Zn-superoxidedismutase

Overall reaction: \(2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2\)

Reaction sequence:
1. \(\text{Cu}^{II}(\text{H}_2\text{O}) + \text{O}_2^- \rightarrow \text{Cu}^{II}(\text{O}_2^-) + \text{H}_2\text{O}\) (exchange of water for hyperoxide)
2. \(\text{Cu}^{II}(\text{O}_2^-) + \text{O}_2^- \rightarrow \text{Cu}^{II}(\text{HO}_2^-)\) (oxidation of external \(\text{O}_2^-\) to \(\text{O}_2\))
3. \(\text{Cu}^{I}(\text{O}_2^-) + \text{H}^+ \rightarrow \text{Cu}^{II}(\text{HO}_2^-)\) (internal reduction of \(\text{O}_2^-\) to peroxide at the Cu centre)
4. \(\text{Cu}^{II}(\text{HO}_2^-) + \text{H}^+ + \text{H}_2\text{O} \rightarrow \text{Cu}^{II}(\text{H}_2\text{O}) + \text{H}_2\text{O}_2\) (separation of hydrogenperoxide)

7. Nitrogen fixation

Nitrogen fixation is the biogenic and non-biogenic transformation of elemental \(\text{N}_2\) into nitrogen compounds, affording to overcome the bonding energy between the two trebly bonded nitrogen atoms (949 kJ/mol). The biogenic fixation, carried out by free living nitrogen-fixing bacteria (*Azotobacter*) and cyanobacteria ("blue-green algae", *Anabaena*), some archaea, and by symbiotic bacteria associated with leguminous plants (*Rhizobium*), leads to ammonium ions. Biogenic fixation accounts for about 60% of the overall nitrogen supply. Non-biogenic non-anthropogenic fixation, which can occur by electric discharge (lightning) in the troposphere, and by cosmic radiation in the stratosphere [\(\text{N}_2 \rightarrow 2\text{N}; \text{N} + \text{O}_2 \rightarrow \text{NO} + \text{O} \rightarrow \text{NO}_x\)], accounts for 10%. For the overall conversions cf. Fig. 22. The remaining 30% of worldwide \(\text{N}_2\) fixation go back to the Haber-Bosch process and combustion of fossil fuels (natural gas, coal, crude oil) and products produced from crude oil (petrol, gasoline, diesel).

Comparison between the Haber-Bosch process and the biogenic \(\text{N}_2\) fixation:

Haber-Bosch
- \(\text{N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3\)
- Temperature: 500 °C
- Pressure: 200-450 bar
- Catalyst: Fe (+ Al\(_2\)O\(_3\) + K\(_2\)O + …)
- Yield: 17%
- Annual production: ca. 10\(^8\) t

biogenic
- \(\text{N}_2 + 10\text{H}^+ + 8\text{e}^- \rightarrow 2\text{NH}_4^+ + \text{H}_2\)
- (energy driven by: \(16\text{ATP} + 16\text{H}_2\text{O} \rightarrow 16\text{ADP} + 16\text{Pi}\))
- Temperature: ca. 20 °C
- Pressure: 1 bar
- Catalyst: Nitrogenase (Fe/Mo- or Fe/V-S cluster)
- Yield: 75%
- Annual production: ca. 10\(^8\) t
Nitrogen cycle

Figure 22: The nitrogen cycle. Processes involving the –III oxidation state of nitrogen are in red. For nitrite and nitrate reductases see the previous chapter

In Fig. 23, the organisation of the metal centres of nitrogenase is depicted. The electrons necessary for the reduction of dinitrogen are delivered by an iron protein containing a cubane-like [4Fe,4S] ferredoxin. Primary e– acceptor is the P cluster of the FeMoco, the iron-molybdenum-cofactor. Two ATP (activated by Mg2+) are hydrolysed per electron transferred. The FeMoco contains two P and two M clusters, arranged in such a way that the complete cofactor attains C2 symmetry. The P cluster is a double cubane containing the Fe8S7 core. The reduction equivalents are then further transported to the M cluster, a Fe7MoS9 core, which is responsible for the final activation and reduction of N2. The cage formed by the metal centres of the M cluster contains electron density which can be interpreted in terms of a nitrogen atom. The M cluster is connected to the protein matrix by just one Cys and a His, the latter coordinated to Mo. The coordination environment of Mo is supplemented by the vicinal hydroxide and carboxylate of homocitrate. In which way activation and reduction of N2 takes place is unknown. In the case of insufficient molybdenum supply, or at low temperatures, a vanadium-nitrogenase is activated (which is more efficient at lower temperatures than the Mo version). An iron-only nitrogenases is also known.

Figure 23. Organisation of nitrogenase (top), and the structure of the M cluster (bottom).
Tutorial: Nitrogen

Abundance: Atmosphere (in the form of N₂, 78.1 Vol-%; 4·10¹⁵ t); hydrosphere (N₂ dissolved in water, 10¹⁴ t); in minerals (saltpetre NaNO₃) and rocks (2·10¹⁷ t); in organic form in the biomass of soil-bound microorganisms (3·10¹¹ t), plants and animals (10¹⁰ t).

The bond in dinitrogen is a triple bond; the bond energy amounts to 949 kJ/mol, i.e. N₂ is particularly inert.

Hydrogen compounds: NH₃ (ammonia; synthesis from H₂ and N₂ according to the Haber-Bosch process) and ammonium ions (NH₄⁺), N₂H₄ (hydrazine), HN₃ and salts derived thereof (azides, e.g. NaN₃, commonly used as fungicide and bactericide in bio-assays). Nitrides, e.g. Na₃N, formally derive from ammonia. Ammonia is an efficient complexing agent, e.g. for Ag⁺: AgCl dissolved in aqueous NH₃ forms soluble [Ag(NH₃)₂]⁺, which gradually converts to silvernitride Ag₃N (highly explosive). The ammonium ion is a Brønsted acid; aqueous solutions of ammonium salts consequently are acidic.

Oxygen compounds: N₂O (dinitrogen monoxide, “laughing gas”), NO (nitrogenmonoxide; synthesis by combustion of ammonia according to the Ostwald process), NO₂ (nitrogendioxide, in equilibrium with N₂O₄. NO₂ reacts with water to form nitrous acid HNO₂ + nitric acid HNO₃), N₂O₅ (dinitrogen pentoxide). Salts derived from HNO₃ are termed nitrates, those derived from HNO₂ nitrites.

Use: Fertilisers (ammonium compounds, nitrates), explosives (nitrate; gun powder is a mixture of saltpetre, charcoal and flower of sulphur). HNO₃ is used for nitrosylations in organic synthesis.

Organic nitrogen compounds: Amines (NH₂R, R = phenyl: aniline; NHR₂; NR₃), heterocyclic nitrogen compounds (for a selection see below), amides (1a) and peptide (1b), hydroxamic acids (2), aminoacids (3), nitro compounds (4), nitrosamines (5), diazo compounds (6).

Other nitrogen compounds: Cyanide CN⁻, cyanate NCO⁻ and thiocyanate NCS⁻ (can be formed in metabolic processes and coordinate to transition metal ions). Cyanide in particular is toxic, but may also occur as ligand in enzymes (iron-only hydrogenase). Amides of carbonic acid: carbamate, e.g. NH₄⁺(CO₂NH₂)⁻ = sal volatile, and urea O=C(NH₂)₂.
8. Nitrogenmonoxide

\[\bullet \text{N} \rightleftharpoons \text{O} \quad \longleftrightarrow \quad \text{N} \rightleftharpoons \text{O}^* \]

NO forms in the troposphere by electric discharges, and under stratospheric conditions under the influence of cosmic rays and high-energy UV. Further oxidation to NO₂ readily occurs:

\[\text{N}_2 \rightarrow 2 \text{N}; \quad \text{N} + \text{O}_2 \rightarrow \text{NO} + \text{O} \]
\[2\text{NO} + \text{O}_2 \rightarrow 2\text{NO}_2 \]

With additional oxygen and moisture, nitric acid is formed, one of the constituents of "acid rain":

\[2\text{NO}_2 + \text{H}_2\text{O} + \frac{1}{2}\text{O}_2 \rightarrow 2\text{HNO}_3 \]

Industrially, NO is obtained by passing a mixture of ammonia and oxygen through a platinum net (contact time \(10^{-3}\) s, temperature 1000 °C), which is further processed to form nitric acid (Ostwald process):

\[2\text{NH}_3 + 2\frac{1}{2}\text{O}_2 \rightarrow 2\text{NO} + 3\text{H}_2\text{O} \]
\[2\text{NO} + 1\frac{1}{2}\text{O}_2 + \text{H}_2\text{O} \rightarrow 2\text{HNO}_3 \]

A large amount of HNO₃ goes into the production of ammonium nitrate for artificial fertiliser. NO is also contained in the exhaust gases of automobiles (along with water and CO₂ as the main components, and fuel constituents), as well as in industrial and domestic exhaust, and rapidly is oxidised to NO₂. Under the influence of UV, i.e. on sunny days, NO₂ is split into NO and oxygen atoms, which oxidise alkanes to alkylhydroperoxides, and form ozone with molecular oxygen (“summer smog”):

\[\text{NO}_2 + \nu \rightarrow \text{NO} + \text{O} \]
\[\text{O} + \text{O}_2 \rightarrow \text{O}_3 \]
\[\text{O} + \text{C}_2\text{H}_6 + \text{NO}_2^* \rightarrow \text{C}_2\text{H}_5\text{O}_2\text{H} + \text{NO}^* \]

In the stratosphere, NO catalyses ozone depletion (see also the tutorial ‘oxygen’ on p. 11):

\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \]
\[\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \]
\[\text{O}_3 + \text{O} \rightarrow 2 \text{O}_2 \text{ (kinetically hindered without catalyst)} \]

In organisms, NO is an important multifunctional messenger and neurotransmitter, targeting, inter alia, metal centres in haeme-type proteins, and cyclic guanosine-monophosphatase (cGMPase). Biosynthesis of NO is achieved by oxidation of one of the NH₂ groups of arginine, catalysed by a NO-synthase (NOS), thereby converting Arg via hydroxyarginine to citrulline; see the illustration to the right. Three functionally different NOS are known: (1) nNOS, in the neurons, initiates signal transduction and thus takes part in mnemonic functions; (2) iNOS, in macrophages, induces the liberation of NO in case of infections and
thus participates – as a killer agent for infectious germs – in the functioning of the immune system; (3) eNOS, in the endothelial tissue cells, where it controls the tonicity of the vascular muscles and thus the blood pressure. The NO-induced relaxation of the vascular muscles is also the basis for the medication of hypertension and angina pectoris with compounds which set free NO under physiological conditions, such as amyl nitrite, \((C_3H_11NO_2)\); nitroglycerin (glycerol trinitrate \(CH_2(ONO_2)-CH(ONO_2)-CH(ONO_2)\)) and nitroprussid sodium (disodium pentacyanido-nitrosylferrate \(Na_2[Fe(NO)(CN)_5]\)).

NO is also used by the glow worm (lightning bug, firefly) to switch on its glow organs. This luminescence can be traced back to the oxidation, by \(O_2\), of luciferyl-AMP (AMP = adenosine-monophosphate) via peroxoluciferin to oxoluciferin; cf. Fig. 24. To start this oxygen consuming formation of peroxoluciferin, the glow worm triggers NO synthesis. The NO is used to block mitochondrial cytochromes (by coordination of NO to Fe) and thus the consumption of oxygen in respiration. The \(O_2\) thus becomes available for triggering luminescence. Other organisms capable of bioluminescence also employ this mechanism. An example is Nocticula scintillans, a dinoflagellate responsible for marine phosphorescence.

![Figure 24. NO induced luminescence in the glow worm.](image)

Larger amounts of NO are toxic, because NO binds to the iron and copper centres of enzymes depending on these metals. Haemoglobin binds NO ten-thousand fold more effective than \(O_2\). On coordination, NO is reduced to NO⁻, which is isoelectronic with \(O_2\) and binds, as \(O_2\), in the bent end-on mode. Additional NO toxicity arises from the fact that NO nitrosylates amines, via the intermediate formation of nitrous acid, to form carcinogenic nitrosamines:

\[
\text{NO} + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + e^- + \text{H}^+ \\
\text{R}_2\text{NH} + \text{HNO}_2 \rightarrow \text{R}_2\text{N}-\text{NO} + \text{H}_2\text{O}
\]

(Nitrous acid is also formed, under physiological conditions, by reduction of nitrate, present in e.g. leafy vegetables.)

9. The biochemistry of zinc

2.5 g of zinc per 70 kg body weight makes Zn the second-to-most abundant transition metal of biological importance. Contrasting iron, copper, manganese and molybdenum, zinc is not redox active (valence electron configuration \(d^{10}\)). In zinc proteins, \(Zn^{2+}\) takes over either a
catalytic or a structural function; see the classification below. The daily requirement for zinc is 3-25 mg, a demand which, since zinc is ubiquitous, is commonly satisfied by our nutrients. Diseases due to zinc deficiency encompass disturbance of growth, arthritis-related health problems, break-down of the immune system and loss of taste. They are usually a consequence of impaired zinc absorption rather than of undersupply. In the blood stream, zinc is transported by albumin and transferrin. Zinc storage is achieved by thioneins (vide infra).

Interlude: Inorganic chemistry of zinc

Important minerals: ZnS (zinc blende, wurtzite, sphalerite), ZnCO₃ (zinc spar, calamine). Earth’s outer sphere (17 km crust + hydro- + atmosphere) contains 0.007 % (by weight) of zinc.

Metallic zinc is obtained by firing of ZnS (\rightarrow ZnO + SO₂) followed by reduction of ZnO with coal, or by electrolytic reduction of aqueous zinc sulphate. Applications include alloys (such as brass, a Cu-Zn alloy), galvanisation (of iron), torch batteries (Lechländer element).

The redox potential is $E^0 = -0.763 \text{ V}$, i.e. Zn is oxidised by H⁺. In air, Zn is, however, stable due to passivation [formation of compact layers consisting of ZnO, Zn(OH)₂ and Zn(OH)(HCO₃)]. In aqueous media, Zn²⁺ exists in the form of the Bronstedt acid [Zn(H₂O)₆]²⁺; Zn²⁺ itself is a Lewis acid (and this is determinant for its enzymatic actions). Zinc hydroxide is amphoteric: Zn(OH)₂ + 2H⁺ \rightarrow Zn²⁺ + 2H₂O; Zn(OH)₂ + 2OH⁻ \rightarrow [Zn(OH)₄]²⁻. With halogenated alkanes RX, zinc forms reagents of composition RZnX, which transform to ZnX₂ and ZnR₂ on heating. RZnX and ZnR₂ are alkylating agents.

Zn²⁺ forms complexes mainly of coordination numbers 4 ([Zn(SR)₄]²⁻, tetrahedral; [Zn(Gly)₂]²⁻, square planar), 5 ([Zn(acac)₂H₂O] [acac = acetylacetonate(1⁻), square-pyramidal] and 6 (octahedral).

Ointments containing zinc (in the form of ZnO, Zn(OH)₂, zinc lactate) have already been employed in the Middle Age and are still employed today in wound healing. The essentiality of zinc for life had been discovered in 1869 by Raulin (inhibition of the growth of the mould Aspergillus niger caused by undersupply of zinc). In 1940, the first zinc-dependent enzyme, carboanhydrase, was isolated by Keilin and Mann, followed by the discovery, in 1954, of the second enzyme, pancreatic bovine carboxypeptidase-A. In 1985, the role of zinc in genetic transcription (“zinc fingers”) became established, and in 1995, the Zn-based Ada repair protein (demethylation of DNA) was characterised. A role of Zn²⁺ in synaptic transmission was found in 2006.

Classification of zinc proteins according to function:

1. **Enzymatic**:
 - Ligases and synthases (C-C-bond formation, e.g. aldolases)
 - Hydrolases: Here, Zn²⁺ is coordinated by three amino acid side-chains of the protein matrix (His, Cys and/or Asp) plus water (inactive, resting form) or a hydroxy group (active form); see the scheme below. Examples: carboxypeptidase-A (an exopeptidase acting at the C-terminus of the peptide), thermolysin (a thermophilic exopeptidase acting at the N-terminus).
RCO + H₂O → RCOOH + HZR'

\[\text{Z} = \text{O}: \text{esterases} \]
\[\text{Z} = \text{NH}: \text{peptidases} \]
\[\text{Z} = \text{phosphate}: \text{phosphatases} \]

Others: Carboanhydrase \((\text{CO}_2 + \text{OH}^- \rightleftharpoons \text{HCO}_3^-; \text{ch. 3 and Fig. 7})\)

Alcoholdehydrogenase \((\text{RCH}_2\text{OH} \rightarrow \text{RCHO} + 2\text{H}^+ + 2\text{e}^-; \text{see below})\)

Structural: Stabilisation of the tertiary structure of protein domains in enzymes (e.g. Cu,Zn superoxide dismutase, alcoholdehydrogenase, cytochrome-c oxidase). Here, Zn\(^{2+}\) is tetrahedrally coordinated by four amino acid residues.

Stabilisation of quaternary structures, e.g. of the hexameric storage form of the peptide hormone insulin, where the monomers are linked by \([\text{Zn(His)}_3(\text{H}_2\text{O})_3]^{2+}\).

Zinc finger are constituents of numerous genetic transcription factors. Coordination mode typically is \([\text{Zn(Cys)}_2(\text{His})_2]\).

Ada repair protein: Repairs (by de-methylation) methylated phosphate linkers in DNA by transfer of the methyl group to cysteinate coordinated to Zn\(^{2+}\).

Thioneins: Storage of Zn\(^{2+}\)/storage of cysteine; detoxification of Cd\(^{2+}\) and other thiophilic metal ions; mode of coordination: \([\text{Zn(Cys)}_4]^{2-}\).

Synaptic transmission: Zinc ions modulate the synaptic activity of brain cells that use glycine as a neurotransmitter.

Examples for enzymes

(for carbonic anhydrase, see ch. 3)

Carboxypeptidase A (from bovine pancreas), is an exo-peptidase of molecular weight 36.4 kDa, which breaks down peptides from their C-terminus. The substrate (the peptide) is activated by coordination of the carbonyl oxygen of the peptide backbone to the Lewis-acid Zn\(^{2+}\) centre. For the several steps of the enzymatic reaction see Fig. 25.

Alcoholdehydrogenase is a homodimer of molecular weight 80 kDa, which catalyses the following reaction:

\[\text{RCH}_2\text{OH} + \text{NAD}^+ \rightarrow \text{RCHO} + \text{NADH}_2 \]

The cofactor NAD is bound by salt interaction and hydrogen bridges close to the active centre. Each subunit contains a catalytically active Zn\(^{2+}\) (Cys, H\(_2\)O, two His) and a structural Zn\(^{2+}\) centre (four Cys). The mechanism of alcohol dehydrogenation is sketched in Fig. 26: The alcohol is bound to and thus activated by Zn\(^{2+}\), and deprotonated by the neighbouring OH\(^-\). The alkoxido ligand thus generated then transfers a hydride to the cofactor NAD\(^+\), and the carbocation gets stabilised by formation of the aldehyde.
Figure 25. Reaction course of the peptide hydrolysis by carboxypeptidase. \(r = -CH(R')-CO_2H; \) \(R = \) residual protein.

Figure 26. Reaction course of the enzymatic oxidation of primary alcohols by alcoholdehydrogenase.

Zinc and the genetic transcription (Zinc fingers)

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Ribosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>RNA-synthase</td>
</tr>
<tr>
<td></td>
<td>transcription factor</td>
</tr>
</tbody>
</table>

Transcription | Translation
The first step of the transcription of the genetic information stored in the DNA into a protein structure occurs in such a way that a complementary messenger-RNA (mRNA) is synthesised at a specific DNA segment (carrying this information). An RNA-synthase is needed, and a “pilot” (the transcription factor) to “direct” the RNA-synthase to the DNA section in question. This transcription takes place in the nucleus of the cell, while the locus for the protein synthesis, the so-called translation, is the ribosome. In many cases, the transcription factors are Zn$^{2+}$ based, containing the zinc ion tetrahedrally coordinated to typically 2 Cys and 2 His. Zn$^{2+}$ structurally stabilises a loop containing specific amino acid moieties necessary for recognising the DNA site, and thus binding to the respective large groove, where the information for the synthesis of the specific protein is contained. An example is shown to the right: C = Cys(1-), H = His, F = Phe, Y = Tyr, L = Leu, Z = Glx (Glu, Glu(1-) or Gln). Zinc fingers usually contain more than just one domain, which work in tandem for nucleic acid recognition; each domain interacts with three base pairs of DNA.

Thioneines

These are small proteins (ca. 6000 Da; 61 amino acids) with a high percentage of cysteine (ca. 1/3) and serine, and no aromatic amino acids. Thioneines can accommodate up to seven Zn$^{2+}$ or other metal ions and probably serve as zinc and/or cysteines storage proteins. They are further used in the (transient) detoxification of heavy metal ions such as Cd$^{2+}$ und Hg$^{2+}$. Fig. 27 shows the two domains of a common thioneine.

![Figure 27. Structure of a (M$^{2+}$)$_7$ thioneines. The metal centres are represented by hatched circles. The solid line represents the protein back-bone, the arrow the point where the protein can be enzymatically split into its two domains. One of the domains contains a cyclic M$_3$S$_3$ cluster in the chair conformation, the other domain an adamantane-like M$_4$S$_5$ cluster.](image)

10. **Cadmium and mercury**

The two heavier homologues of zinc, cadmium and mercury, are toxic. The toxicity of Cd$^{2+}$ can be traced back, in part, to its higher thiophilicity, allowing Cd$^{2+}$ to replace zinc in its enzymes. Since Cd$^{2+}$ has a larger ionic radius than Zn$^{2+}$ (see Table), it is sufficiently less Lewis-acid, i.e. a replacement of Zn$^{2+}$ for Cd$^{2+}$ commonly results in a deactivation of the enzyme. An exception is the marine diatom *Thalassiosira weissflogii*, which contains Cd$^{2+}$...
instead of Zn\(^{2+}\) in the active centre of its carboanhydrase of 43 kDa molecular weight. Due to the similar ionic radii of Cd\(^{2+}\) and Ca\(^{2+}\), Cd\(^{2+}\) also acts as an antagonist of Ca\(^{2+}\). Cd\(^{2+}\) can, e.g., be built into calcium sites of the hydroxyapatite of the bones, leading to diseases (such as itai-itai disease) reminiscent of osteoporosis.

<table>
<thead>
<tr>
<th>Comparison of properties of Cd(^{2+}), Zn(^{2+}) und Ca(^{2+})</th>
<th>electronegativity</th>
<th>Ionic radius (coordination number 6) / pm</th>
<th>Redox potential (E^0 / V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(^{2+})</td>
<td>1.5</td>
<td>95</td>
<td>-0.40</td>
</tr>
<tr>
<td>Zn(^{2+})</td>
<td>1.7</td>
<td>73</td>
<td>-0.76</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>1.0</td>
<td>100</td>
<td>-2.87</td>
</tr>
</tbody>
</table>

Finally, Cd\(^{2+}\) has a high affinity to the phospholipids in membranes. By coordination, it disables the membrane’s function. Detoxification is achieved by thioneines (see above), by glutathione \(\gamma\)-Glu-Cys-Gly (structure shown below) or by phytochelatines \{\(\gamma\)-Glu\}-\(\gamma\)-Cys\}_n\-Gly \((n = 2-11)\). Detoxification by coordination to thioneines is of a transient nature only, since Cd is redeposited after about 2 weeks in the kidney cortex (→ chronic detoxification → renal failure). The biological half-life amounts to ca. 10-30 years.

\[
\text{H}_2\text{N}-\text{CH}-(\text{CH}_2)_2-\text{C-NH}-\text{CH}-\text{C-NH}_2-\text{CO}_2\text{H} \quad \text{CH}_2 \quad \text{HS} \quad \text{CO}_2\text{H}
\]

Cadmium is an important global environmental pollutant. Anthropogenic sources of cadmium (zinc mining and zinc smelting [Cd is commonly present in small amounts in zinc ores], cadmium soaps used as flexibiliser in plastics; cadmium-based [CdS] pigments) surmount natural sources (volcanic exhalations, weathering, bacterial activity) by a factor of 20.

In contrast, pollution by mercury, although potentially a serious problem locally, is not a global problem; natural and anthropogenic sources for mercury are about balanced. Anthropogenic mercury sources are waste combustion (mercury batteries), the electrolytic production of chlorine by the amalgam process, crematoriums (dental amalgam fillings), gold washing with mercury, and pesticides based on mercurials.

Mercury and mercury compounds are highly toxic, organic mercury compounds additionally are teratogenic. “Famous” cases of mercury poisoning are the accidents in Minamata, Japan (1953-1956), and the Iraq (1971-1972). Contamination in the Minamata Bay came about by industrial sewages stemming from the paper industry (paper, in former times, was treated with mercury compounds to prevent fouling). The mercury which thus was released to the sea water accumulated via the food chain and was finally deposited in high amounts in the fish of the form of CH\(_3\)Hg\(_2\)SH, the so-called Minamata toxin. Toxication in the Iraq was due to wheat seeds treated with ethylmercury-\(p\)-tolylsulphamid, and processed to flour instead of being used as seed. Particularly toxic, because of its balanced lipo- and hydrophilicity, is “methylmercury MeHg\(^{+}\)” (more correct formulation: CH\(_3\)HgCl), which easily surmounts the blood-brain barrier. Because of the comparatively high vapour pressure, elemental mercury (14 mg in 1 m\(^3\) air at 20 °C), but also mercury compounds such as cinnabar (HgS, 10 ng in 1 m\(^3\) air) are toxic when inhaled.
Mercury and its compound are liable to speciation in the atmosphere, aquasphere and siderosphere. The speciation is partly abiotic (chemical and photochemical speciation), partly biotic (such as the methylation of Hg). Some of the more important paths of mutual interconversion are depicted in Fig. 28. The methylation of mercury under physiological conditions is carried out by methylcobalamin, a close relative to vitamin B₁₂ (adenosylcobalamin).

Interlude: Cadmium

Cadmium is contained in small amounts in zinc ores (zinc blende, e.g., contains 0.1-0.5% Cd). Small amounts are also present in shales, in black coal and phosphate minerals such as phosphorite. Since phosphate minerals are used in fertilisers, Cd becomes introduced into farmlands and thus into farming products and nutrients. Cd is used in cadmium-based accus, as a protective iron against rusting, in CdS-based yellow to orange pigments, cadmium soaps, and neutron absorbers in nuclear power stations.

Coastal sea water can contain up to 30 µg/l Cd. Cd is enriched in sea weeds, sea shells, squids and, occasionally, fish, as well as in mushrooms and leafy vegetables. Other vegetables, wheat and grass accumulate Cd only when grown on contaminated farm land stemming from fertilisers and industrial emissions.

According to the WHO, 70 µg Cd per day are tolerable. About 35 µg are taken up daily via non-contaminated food. Smokers are subjected to an additional uptake of ca. 35 µg per day. Acute syndromes of poisoning can emerge with a singular uptake of 15 mg; about 500 mg are lethal. The threshold limit value (TLV) is 0.1 mg/m³, the biological tolerance value (BTV) 15 µg/l (urine) and 1.5 µg/l (blood). Cd is carcinogenic (A₂), mutagenic (C₂) and teratogenic.

Interlude: Mercury

In nature, Hg occurs mainly in elemental form and in the form of cinnabar (HgS). Metallic mercury does not corrode in air. Earlier applications were fillings of thermometers, barometers and the like. Nowadays it is used in chloralkali electrolysis, dental fillings, and batteries. Coal fired power plants and volcanic exhalations are important sources for mercury pollution.

The TLV is 0.1 (Hg and HgCl₂) and 0.01 (MeHgCl) mg/m³, respectively, the BTV 50 (blood) and 200 µg/l (urine) for inorganic Hg compounds and 100 µg/l for organic compounds. The LD₅₀ value (Rat, oral) amounts to 57 mg/kg (LD₅₀: lethal dose for 50% of the test animal).

Paracelsus employed mercury preparations against skin diseases, syphilis and inflammation. Hg preparations have also a long standing tradition as disinfectants (sublimate = HgCl₂; mercurochrome). Contrasting its lighter homologues, Hg also forms monovalent compounds. An example is calomel = Hg₂Cl₂.

Mercury and its compound are liable to speciation in the atmosphere, aquasphere and siderosphere. The speciation is partly abiotic (chemical and photochemical speciation), partly biotic (such as the methylation of Hg). Some of the more important paths of mutual interconversion are depicted in Fig. 28. The methylation of mercury under physiological conditions is carried out by methylcobalamin, a close relative to vitamin B₁₂ (adenosylcobalamin).

Figure 28, (following page). Speciation of mercury. Anthropogenic sources are framed, microbial sources are in red. Su = substrate.
Speciation of mercury

11. The role of the alkaline metals and alkaline earth metals

Physiologically relevant are the alkaline metal ions Na⁺ und K⁺, and the alkaline earth metal ions Mg²⁺ und Ca²⁺. Li⁺ is of therapeutic interest (treatment of mood disorders such as maniac depression; treatment of hypertension). The transition metal ion Mn²⁺ exhibits some similarities with Ca²⁺ und Mg²⁺.

Amounts present in man (in g per 70 kg body weight): Na 105, K 140, Mg 35, Ca 1050 g
Daily demand: Na 1.1-3.3, K 2.0-5.0, Mg 0.3.0.4, Ca 0.8-1.2 g.

With the exception of Mg²⁺, there are striking differences in the intra- and extra-cellular concentrations of these cations. The following Table summarises the intra- and extracellular concentrations of the more important cations and anions. The Table also contains concentrations of these ions in sea-water, often considered “the cradle of life“. To maintain the “correct” concentration gradients between the cytosol and the extracellular space is of prime importance to ascertain the specific functions of these ions, such as controlling the osmotic pressure and cell membrane potentials, triggering signal transduction, and activating enzymes.

Table: Concentrations of selected ions (mM) in the intracellular and extracellular space (mean values for all human cell types, and data for erythrocytes and blood plasma are listed). For comparison, ion concentrations in sea water are also provided.

<table>
<thead>
<tr>
<th></th>
<th>K⁺</th>
<th>Na⁺</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Cl⁻</th>
<th>HCO₃⁻</th>
<th>HPO₄²⁻</th>
<th>SO₄²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular in erythrocytes</td>
<td>92</td>
<td>11</td>
<td>0.1</td>
<td>2.5</td>
<td>-</td>
<td>155</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Blood plasma</td>
<td>5</td>
<td>152</td>
<td>2.5</td>
<td>1.5</td>
<td>130</td>
<td>195</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Sea water</td>
<td>10</td>
<td>500</td>
<td>10</td>
<td>50</td>
<td>500</td>
<td>variabel</td>
<td>0.002</td>
<td>29</td>
</tr>
<tr>
<td>Intracellular mean value</td>
<td>155</td>
<td>10</td>
<td>0.001</td>
<td>15</td>
<td>8</td>
<td>10</td>
<td>65</td>
<td>0.5</td>
</tr>
<tr>
<td>Extracellular mean value</td>
<td>4</td>
<td>142</td>
<td>2.5</td>
<td>0.9</td>
<td>120</td>
<td>27</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>
Overview of the functions (selection):
- Support (endo- and exo-skeletons, teeth): Ca (and Mg)
- Information transfer by migration along a concentration and/or electrochemical gradient: all ions
- Regulation of the osmotic pressure and of membrane potentials: Na, K
- Activation and regulation of enzymes Ca (and Mg, K)
- Signal transduction, e.g. in neurotransmission Ca, K
- Chlorophyll: Mg
- Phosphate und anaerobic energy metabolism; activation by phosphorylation: Mg
- Stabilisation of cell membranes by the formation of cross-links between membrane proteins and polysaccharides: Mg (and Ca)

For the physiological functions, the charge density (CD = ionic charge divided by the ionic radius) is of central importance:

<table>
<thead>
<tr>
<th></th>
<th>Li⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
<th>Mn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>r/Å²</td>
<td>0.76</td>
<td>1.02</td>
<td>1.38</td>
<td>0.72</td>
<td>1.00</td>
<td>0.83</td>
</tr>
<tr>
<td>LD</td>
<td>1.45</td>
<td>1.10</td>
<td>0.72</td>
<td>2.78</td>
<td>2.0</td>
<td>2.41</td>
</tr>
</tbody>
</table>

for the coordination number 6

The larger the charge density, the higher is the ability of the ion to polarise a molecule. The charge density of Mg²⁺ is particularly high: contrasting Ca²⁺, but in accordance with transition metal ions, Mg²⁺ thus forms stable complexes also with N-functional ligands; see e.g. chlorophyll. Alkaline and alkaline earth metal ions are rather mobile; typically, their complexes are characterised by small stability constants. In aqueous media, and in the absence of other ligands, the ions are present in hydrated form. Unlike aqua complexes of transition metal ions, the number of water molecules in the hydration sphere is hardly defined, and the interactions are weak. The rate constants for the exchange of water in the hydration sphere and surrounding water, i.e. for the equilibrium

\[[M(H_2O)_x]^{n+} (= "M^{n+}\cdot aq") \rightleftharpoons M^{n+} + xH_2O \]

are in the order of magnitude of \(10^{-10} - 10^{-7}\) s⁻¹ for Na⁺, K⁺ and Ca²⁺, and \(10^{-7} - 10^{-5}\) s⁻¹ for Mg²⁺. Mg²⁺ complexes thus are not only thermodynamically but also kinetically more stable than those of the other ions.

Magnesium

Magnesium takes over a crucial role in the phosphate (and hence the energy) metabolism in that it coordinates to diphosphate or phosphate + carboxylate, and thus activates molecules and triggers activation paths. Examples are kinases, ATPases, phosphatases, isomerases, enolases, proteinsynthases and –polymerases; see the following examples (ATP hydrolysis; creatinkinase):

\[
\begin{align*}
\text{ATP hydrolysis protected} & \quad \text{ATP hydrolysis susceptible} \\
\text{(Mg²⁺ coordinates to Pγ and Pβ)} & \quad \text{(Mg²⁺ coordinates to Pα and Pβ)} \\
\text{ADP} & \quad \text{Pi}
\end{align*}
\]
The complex formation constant for the complex formed between Mg\(^{2+}\) and ATP (Mg\(^{2+}\) + ATP\(^{3-}\) \(\Rightarrow\) [MgATP]\(^{-}\)) is about \(10^{7} \text{ M}^{-1}\) (the dissociation constant correspondingly 0.1 mM). The coordination sphere of Mg\(^{2+}\) is supplemented by water (and, depending on the pH, OH\(^{-}\)). The free enthalpy of reaction for the ATP hydrolysis amounts to \(\Delta G \approx -35 \text{ kJ/mol}\). The phosphate group (P\(_i\) = inorganic phosphate) generated by ATP hydrolysis can also be transferred to suitable substrates. An example is the phosphorylation of sugars. In cells with a high turnover rate for ATP, phosphate can be transferred to creatine. Creatinephosphate on its part serves as a source for rapid regeneration of ATP. The daily turnover of ATP at rest corresponds to about half of the body weight.

\[
\begin{align*}
\text{Creatin} &\quad \text{(Creatinkinase)} & \quad \text{Phosphocreatin} \\
\text{H}_2\text{C} &\text{CO}_2^- & \quad \text{H}_2\text{C} &\text{CO}_2^- \\
\text{H}_3\text{C} &\text{N} &\text{NH}_2 & \quad \text{O} &\text{O} \\
\Theta &\text{NH}_2 & & \quad \text{O} &\text{O} \\
+ \text{MgATP}^- & \quad & \quad \Theta &\text{NH}_2 & + \text{MgADP} \\
\text{Phosphocreatin} & \quad & \quad \text{Creatin} &\text{CO}_2^- & \quad \text{(Creatinkinase)} \\
\end{align*}
\]

Mg\(^{2+}\) also mediates the hydrolysis of phosphoester bonds by phosphatases by stabilising a trigonal-bipyramidal transition state for phosphorus:

\[
\begin{align*}
\text{(H}_2\text{O})_n\text{Mg}^{2+} &\text{PO}_4^- & \quad \text{(H}_2\text{O})_n\text{Mg}^{2+} \\
\Theta &\text{OH} & \quad \Theta &\text{OH} \\
\rightarrow & & \rightarrow \\
\text{R} &\text{H} & \rightarrow &\text{R} \\
\text{HO} &\text{O} & \rightarrow &\text{OH} \\
\text{R}' &\text{OH} & \rightarrow &\text{R}' \\
\text{Transition state} & \quad & \text{(trigonal-bipyramidal)} & \quad & \text{(trigonal-bipyramidal)}
\end{align*}
\]

Interlude: The Gibbs-Helmholtz Equation

This equation connects the reaction enthalpy (\(\Delta H\)) with the free reaction enthalpy (\(\Delta G\), Gibbs free energy), the reaction entropy (\(\Delta S\)) and the temperature T:

\[
\Delta G = \Delta H - T \Delta S
\]

According to this relation, part of the reaction enthalpy is converted to entropy changes in the reaction system. In the global system, the entropy always increases (+\(\Delta S\)); in a subsystem, the entropy can also decrease (-\(\Delta S\)). A reaction will only take place voluntarily in case of a negative \(\Delta G\).

Example: \(\text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O}\): \(\Delta H = -286 \text{ kJ/mol, } T\Delta S = -49 \text{ kJ/mol (at } 298 \text{ K); } \Delta G = -239 \text{ kJ/mol}\)

Even in case of a negative \(\Delta G\) (thermodynamically allowed reaction), a reaction system may be metastable (i.e. the reaction does not take place) because it is kinetically hindered due to a high activation barrier (example: the formation of molecular oxygen from ozone and oxygen atoms in the stratosphere). Catalysts reduce this activation barrier.

Sodium and potassium

In order to adjust to the intra- and extra-cellular concentrations of Na\(^{+}\) und K\(^{+}\) it is essential that these ions can cross the membrane of the cells. Such a trans-membrane transport can be passive (via diffusion) or active by use of an ion pump. Since the lipophilic cell...
membrane is usually impermeable for the hydrated, hydrophilic sodium and potassium ions, transport mediators, so-called ionophores can be employed. Alternatively, and more efficiently, the transport can occur along ion channels in the membrane.

The active transport for Na\(^+\) and K\(^+\) is achieved by a Na\(^+\)/K\(^+\)-specific pump, an ATPase, abbreviated \(E\) (for enzyme) in the following discussion. The energy necessary for the transport Na\(^+(in)\) \(\rightarrow\) Na\(^+(ex)\) // K\(^+(ex)\) \(\rightarrow\) K\(^+(in)\) against a concentration gradient is provided by the hydrolysis of ATP. \(E\) consists of two glycoprotein subunits of molecular mass 131 and 62 kDa, the larger of which is the transport unit. In the course of the ion transport, coupled to phosphorylation/dephosphorylation of \(E\), this unit switches between the conformations \(E_1\) (Na\(^+\) sensitive) and \(E_2\) (K\(^+\) sensitive). Per MgATP hydrolysed two 2 K\(^+\) are locked in and 3 Na\(^+\) are locked out:

\[
\text{MgATP}^+ + 3\text{Na}^+_{\text{in}} + 2\text{K}^+_{\text{ex}} \rightarrow \text{MgADP} + \text{Pi}^- + 3\text{Na}^+_{\text{ex}} + 2\text{K}^+_{\text{in}}
\]

The charge imbalance thus produced is balanced, in part, by a Na\(^+\),Ca\(^{2+}\)-ATPase, and in part by passive transport. The various steps of the transport as catalysed by the Na,K-ATPase are assembled in Fig. 29; for the conformational changes of \(E\) see Fig. 30.

Figure 29. Function of the Na,K pump (Na,K-dependent ATPase), \(E\).

Individual events (see Fig. 29):
(1) Uptake of intracellular Na\(^+\), Mg\(^{2+}\) and ATP by \(E_1\);
(2) Phosphorylation of the enzyme (cf. Fig. 31);
(3) Conformational change \(E_1 \rightarrow E_2\) (cf. Fig. 30);
(4) Extrusion of Na\(^+\) into the extracellular space, and uptake of K\(^+\);
(5) Dephosphorylation of the enzyme, and release of phosphate and Mg\(^{2+}\) into the intracellular space;
(6) Conformational rearrangement \(E_2 \rightarrow E_1\);
(7) Release of K\(^+\) into the intracellular space;
(8) Reactivation of the enzyme by uptake of Mg\(^{2+}\): \(E_1 + Mg^{2+} \rightarrow E_1(Mg^{2+})\).

Figure 30. Transmembrane transport of Na\(^+\) and K\(^+\) by ATPase. \(E_1\) and \(E_2\) represent different conformers of the ATPase.

Figure 31. Phosphorylation of the ATPase. Phosphatases can be inhibited by the phosphate analogue vanadate (H\(_2\)PO\(_4\)\(^-\)), because vanadium freezes in the trigonal-bipyramidal transition state (shown on the left).

Ion channels and ionophores

Along with the ATP driven transport, alkaline (and alkaline earth) metal ions can surmount the membrane also by “passive” transport along ion channels (hydrophilic transport) or with the help of transport vehicles, so-called ionophores (hydrophobic transport).

Ion channels are trans-membrane proteins, with their inner surface aligned with carboxylate (stemming from Glu and Asp) or/and carbonyl groups, allowing for the transport of ions, which are usually partly or completely deprived of their hydration shell while transported through weak coordinative interaction with the oxygen functionalities in the channel. The transport can also occur in the sense of a symport (concomitant transport of two ionic species) or antiport (counter transport; two ionic species being transported in opposite directions). The following types of ion channels are distinguished:
- Leak channels; only for K⁺: they are always open;
- Gated channels; these are channels with “gates” (or locks) which are usually closed, but can be opened by a stimulus when required:
 - voltage gated: by a change in the electrochemical membrane potential;
 - ligand gated: by a chemical stimulus, e.g. neurotransmitters (acetylcholine, dopa, glutamate, NO) or toxins (nicotine), or Ca²⁺;
 - stretch gated: by a mechanical stimulus, e.g. a physical change in the membrane as a consequence of strain.

The selectivity of ion channels for K⁺ and Na⁺ is implemented by geometrical factors, as shown at the right hand side for a K⁺ selective channel: The Na⁺ cation is too small to fit properly into the opening provided by four oxygen functionalities of the channel.

Ionophores are macrocyclic compounds with mainly O-functional groups, which can form stable complexes in vivo specifically with Na⁺ or K⁺. Models for ionophores are crown ethers, cryptands and calixarenes; Fig. 32. The selectivity for Na⁺ and K⁺ is determined by the size (diameter) of the space available within the functionalities. Examples for naturally occurring ionophores are displayed in Fig. 33: Nonactin and enniatine (both for K⁺) und antamanide (for Na⁺). Antamanide is a cyclic decapeptide of composition -Val-Pro-Pro-Ala-Phe-Phe-Pro-Pro-Phe-Phe-.

![Figure 32](image-url)

Figure 32. Ionophore models suited for the coordination of Na⁺ and K⁺: Crown ethers (top row), cryptands (bottom left and centre), and a calixarene (bottom right). 18C6 = 18-crown-6 (18-membered ring, 6 O-functions); C221 = cryptand-221 (221 denotes the number of O-functions in the three bridges between the amine-nitrogens). The symbol [4] in the calixarenes indicated the number of phenolic units.
Calcium

Sparingly soluble calcium compounds (such as carbonates and phosphates) can act as bearings by being incorporated into exo- and endo-skeletons. Examples are bone (calcium phosphate: hydroxyapatite) and sea shells (calcium carbonate: aragonite, calcite). The bones of the vertebrates are composite materials, containing about 50% collagen (a fibrous protein) and 50% hydroxyapatite Ca$_5$(PO$_4$)$_3$(OH)$_x$F$_{1-x}$ ($x \leq 0.01$). A person of average weight (70 kg) contains ca. 1.1 kg calcium, mainly as a constituent of the bone tissue. Only about 10 g are not confined to bony materials. These 10 g are used for a variety of functions in the organism, including the regulation of cell function, muscle contraction, blood clotting, and enzyme regulation, the latter with the help of specific Ca$^{2+}$ binding proteins (calmodulins; see below).

On a general basis, Ca$^{2+}$ acts as a second messenger by activating, regulating and reinforcing signals. Additionally, Ca$^{2+}$ can take over the role of a co-factor in hydrolases (e.g. in nucleases responsible for the hydrolysis of the phosphodiester bonds), and exert structure function in proteins (e.g. in thermolysin and in proteinase-K). In this respect, it resembles Zn$^{2+}$. As a rule, only very low cytosolic calcium concentrations are necessary (about 0.1 to 1 µM). The extracellular Ca$^{2+}$ concentrations are about 1 mM, and they can go up to 5 mM in special cellular compartments (SR; see below). The exchange between the extra- and intracellular space is achieved by Ca-ATPases (formation of ATP in case of a transport with the concentration gradient; see for a Na,Ca-ATPase below left). Malfunctions of the calcium metabolism can result in the deposition of sparingly soluble calcium compounds (oxalate, phosphate, steroids) in the blood vessels (where they cause calcification and cardiovascular diseases) and secretion organs (where these deposits are responsible for stones in gall, bladder, kidney).

\[
\text{Ca}^{2+} + 2\text{Na}^+ \xrightarrow{\text{extra} \leftrightarrow \text{intra}} \text{ADP} + \text{P}_i \rightarrow \text{ATP}
\]
Contrasting Mg$^{2+}$, which prefers octahedral coordination, Ca$^{2+}$ has a tendency to form complexes of coordination number 7 or 8. Preferential ligands are H$_2$O, carboxylate (Asp, Glu), the carbonyl groups of the peptide bonds, and alcoloholate (Ser). An example is parvalbumin (see the picture above, right), a Ca$^{2+}$ protein in the smooth muscles, which takes part in muscle relaxation.

Ca$^{2+}$ also plays an essential role in muscle contraction. Muscle cells contain protein filaments (so-called myofibrils), which are embedded within the sarcoplasmatic reticulum (SR). The SR contains vesicles (ves) which store Ca$^{2+}$ at concentrations of 1-5 mM. Ca$^{2+}$ storage is provided by calsequesterin, an acidic protein of 50 kDa molecular weight, which can bind up to 50 Ca$^{2+}$ to Asp and Glu. Muscle contraction is achieved by release of Ca$^{2+}$ into the cytoplasm (cyt) of the SR via the SR membrane, a process where there is again an ATPase (E) involved, which switches between two conformations E_1 and E_2:

- Transport out of the vesicles into the cytoplasm (following the concentration gradient), coupled with the synthesis of ATP, triggers the contraction of the muscle fibrils:
 \[2\text{Ca}^{2+}\text{(ves)} + E_2\text{-phosphate} + \text{ADP} \rightarrow 2\text{Ca}^{2+}\text{(cyt)} + E_1 + \text{ATP} \]

- Return transport of the Ca$^{2+}$ ions from the cytoplasm into the vesicles results in muscle relaxation and consumption of ATP:
 \[2\text{Ca}^{2+}\text{(cyt)} + E_1 + \text{ATP} \rightarrow 2\text{Ca}^{2+}\text{(ves)} + E_2\text{-phosphate} + \text{ADP} \]

The activation of Ca$^{2+}$-dependent enzymes is initiated by proteins of the calmodulin family. Calmodulin = calcium modulating protein. These are small proteins of 17 kDa molecular weight, which can bind four Ca$^{2+}$ ions. Ca$^{2+}$ binding leads to a conformational change (Fig. 34 top), allowing for coupling of Ca$^{2+}$-calmodulin to the enzyme (grey in Fig. 34), the substrate of which (blue) becomes activated (red). Examples are Ca-ATPases, NO-synthases [see. ch. 8], NAD-kinases, adenylate-cyclase.

Figure 34. Model for the activation of enzymes (grey; e.g. NO-synthase) by Ca$^{2+}$-calmodulin. Blue: substrate (e.g. arginine); red: activated substrate.
Exkurs: Biomineralisation

Hierunter versteht man die Generierung anorganischer („mineralischer“) Materialien oder anorganisch-organischer Kompositmaterialien durch biologische Aktivität. Beispiele sind Magnetit (Fe₃O₄) und Greigit (Fe₃S₄) in den Magnetosomen magnetostatischer Bakterien, Calciumcarbonate (CaCO₃: Calcit, Aragonit) als Exoskelette von Muscheln, Schnecken, Seeigeln und Korallen sowie in den Zähnen der Raspelzungen von Schnecken, Gips (CaSO₄·½H₂O) als Schwerkraftsensor in Tiefseequallen (*Periphylla*) und in Algen der Gattung *Closterium*, und Siliziumdioxyd-Hydrate in den Exoskeletten von Radiolarien und Diatomeen (Kieselalgen). In allen Fällen werden die mineralischen Stoffe an einer Proteinmatrix aufgebaut (was zu den oft filigranartigen Strukturen führt), die sich – im 0.1%-Bereich – in solchen Materialien auch wiederfinden.

Magnetit und Greigit in einem magnetostatischen Bakterium
Calcit der Seeigelschale
SiO₂-Skelette von Radiolarien (links) und Diatomeen