

Synthesis and Investigation of Potential Anti-HIV Active Nucleoside Triphosphate Prodrugs (Tri*PPP*ro-Compounds)

<u>Tobias Nack¹</u>, Dominique Schols², Jan Balzarini² and Chris Meier^{1*}

¹Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany. ²Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven (Belgium). * chris.meier@chemie.uni-hamburg.de.

Introduction

Nucleoside analogs are widely used for the treatment of antiviral infections and anticancer chemotherapy.^[1] A limitation of these compounds is that they have to undergo biotransformation into the corresponding NTPs to act as inhibitors of the viral reverse transcriptase (RT).^[2] After cellular uptake of the nucleoside, this transformation is achieved *via* stepwise phosphorylation catalyzed by kinases (Scheme 1). Often, the first phosphorylation step is the bottleneck in the overall metabolism, *e.g.* for d4T. Nucleotide prodrugs represent a promising bypass to skip this processes. As a consequence of their lipophilic masking units they are able to penetrate through the cell membrane in contrast to the high negatively charged nucleotides.^[3] Thus the biological activity of common nucleoside analogs has been improved and these prodrugs are valuable tools for studies regarding the nucleoside metabolism.^[4] Recently, we reported on the Di*PP*ro approach for the bioreversible protection of nucleoside diphosphates (NDP).^[5] In contrast to the *cyclo*Sal approach^[4], here the delivery mechanism relies on an enzymatically triggered process. Since a variety of nucleoside diphosphates with different aliphatic masking units have been synthesized and investigated, we were able to transfer this concept to NTPs (Tri*PPP*ro approach).

Figure 1: Ion-pair RP-HPLC profile of CF_3 -Tri*PPP*ro-d4T after incubation in PBS, *pH*=7.3 (9-769 hours). Peaks were attributed by co-injection and/or t_R of reference compounds.

The Tri*PPP*ro Hydrolysis Concept

- $\hfill \ensuremath{\,^\circ}$ Based on two acceptor substituted benzyl esters attached to the $\gamma\hfill \ensuremath{\,^\circ}$ phosphate
- Aroyl residues used as lipophilic masking units
- Upon enzymatic cleavage of the phenolic aroylester, a strong donor substituent was formed
- \rightarrow benzyl bond is cleaved which led to an masked intermediate
- \rightarrow Repetition of this process released NTP

Scheme 2: General structure and proposed hydrolysis pathway of aroyl-containing TriPPPro-compounds.^[7]

Synthesis

Starting with d4T, the nucleoside analog is stepwise phosphorylated to d4TDP using the *cyclo*Sal technology.^[8] The corresponding Tri*PPP*ros were obtained by dicyanoimidazole (DCI) mediated coupling with bis(4-aroyloxybenzyl)phosphoramidites in yields up to 71%.

Figure 2: Ion-pair RP-HPLC profile of CF_3 -Tri*PPP*ro-d4T after incubation in PBS with porcine liver esterase (PLE), 0.5 mg/mL, *pH*=7.3 (0–20 hours). Peaks were attributed by co-injection and/or t_R of reference compounds.

- \rightarrow Highly selective formation of d4TTP in PBS and with PLE
- \rightarrow Enzymatically triggered cleavage process accelerates hydrolysis

Hydrolysis Half-Lives and Antiviral Data

	<i>t_{1/2}</i> (Tri <i>PPP</i> ro-compounds) / h			t _{1/2} (Intermediate) / h	
R	PBS ^{a)}	CEM/0 ^{b)}	PLE ^{c)}	PBS ^{a)}	PLE ^{c)}
CF ₃	18 ± 5	5.0 ± 0.7	<10 min	79 ± 10	1.1 ± 0.1
F	19 ± 4	7.9 ± 0.8	<10 min	320 ± 27	16.1 ± 1.7
Н	23 ± 13	0.8 ± 0.4	<15 min	831 ± 59	22.0 ± 1.9

Table 1: First order hydrolysis half-lives of Tri*PPP*ro-compounds and intermediates in different media. a) phosphate buffer, *pH*=7.3, 50 mM; b) Human T-lymphocyte cell extract, *pH*=6.9; c) in PBS with porcine liver esterase, 0.5 mg/mL.

	<i>EC₅₀</i> / μM ^{a)} MT-4		СС ₅₀ / μМ ^{ь)} МТ-4
R	HIV-1	HIV-2	
CF ₃	0.22	0.56	100
F	0.38	0.81	60
Н	0.46	0.59	85

Table 2: Antiviral data of Tri*PPP*ro-compounds and theparent nucleoside d4T. a) 50% Effective concentration;b) 50% Cytotoxic concentration.

Scheme 3: Reagents and conditions: **1)** 5-Chloro-saligenylchlorophosphite, DIPEA, CH₃CN, -20 °C \rightarrow rt, 3.5 h; **2)** *t*-BuOOH, -10 °C \rightarrow rt, 30 min; **3)** (*n*-Bu₄N)H₂PO₄, DMF, rt, 24 h; **4)** NEt₃, THF, 0 °C \rightarrow rt, 19 h – 5 d; **5)** DCI, CH₃CN, rt, 30 - 50 min; **6)** *t*-BuOOH, -20 °C, 20 - 30 min; **7)** RP-18 silica column chromatography, Dowex 50WX8 (NH₄⁺).

d4T 0.50 0.83 176	••	0.40	0.00	05
	d4T	0.50	0.83	176

Conclusion

- Successful synthesis of different Tri*PPP*ro-d4T compounds in good yields
- Efficient release of d4TTP by cleavage of the bioreversible masking units → chemically stable, enzymatically labile
- easy tunable stability by changing the substitution pattern of the aroyl unit

References: [1] S. Broder, Antiviral Res. 2010, 85, 1–18. [2] a) E. de Clercq, Nat. Rev. Drug Discov. 2002, 1, 13–25; b) T. Cihlar, A.S. Ray, Antiviral Res. 2010, 85, 39–58. [3] C.R. Wagner, V.V. Iyer, E. J. McIntee, Med. Res. Rev. 2000, 20, 417–51. [4] C. Meier, Eur. J. Org. Chem. 2006, 1081–1102. [5] a) H. J. Jessen, T. Schulz, J. Balzarini, C. Meier, Angew. Chem. Int. Ed. 2008, 47, 8719–8722; b) T. Schulz, J. Balzarini, C. Meier, ChemMedChem 2014, 9, 762–775. (For the "DiPPro man" illustration see back cover of aforenamed ChemMedChem issue) [6] a) for the illustration of reverse transcriptase see www.rcsb.org/pdb, PDB ID: 1hmv b) D. W. Rodgers et al., Proc. Natl. Acad. Sci. USA 1995, 92, 1222–1226. [7] a) for the illustration of hCE1 see www.rcsb.org/pdb, PDB ID: 1yah b) C. D. Fleming, et al., J. Mol. Biol. 2005, 352, 165–177. [8] S. Warnecke, C. Meier, J. Org. Chem. 2009, 74, 3024–3030.