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Introduction / Proof of the Concept: Hydrolysis Studies \

Nucleoside analogs are widely used for the treatment of antiviral infections and anticancer
chemotherapy.l!l A limitation of these compounds is that they have to undergo biotransformation
into the corresponding NTPs to act as inhibitors of the viral reverse transcriptase (RT).[2] o

After cellular uptake of the nucleoside, this transformation is achieved via stepwise Thymine HOOCO d4TDP\ Intermediate
phosphorylation catalyzed by kinases (Scheme 1). Often, the first phosphorylation step is the | CF

pottleneck in the overall metabolism, e.g. for d4T. Nucleotide prodrugs represent a promising oH
pypass to skip this processes. As a consequence of their lipophilic masking units they are able
to penetrate through the cell membrane in contrast to the high negatively charged nucleotides.!®! | /\
Thus the biological activity of common nucleoside analogs has been improved and these
prodrugs are valuable tools for studies regarding the nucleoside metabolism.[*!

Recently, we reported on the DiIPPro approach for the bioreversible protection of nucleoside
diphosphates (NDP).P! In contrast to the cycloSal approach!¥, here the delivery mechanism

In phosphate buffer (PBS):

CF;5-TriPPPro-d4T

/

relies on an enzymatically triggered process. Since a variety of nucleoside diphosphates with
different aliphatic masking units have been synthesized and investigated, we were able to
transfer this concept to NTPs (TriPPPro approach).
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~NH 2 4 6 8 10 12 14 16 18 20
O—/—P-0-P-0-P-0 Figure 1: lon-pair RP-HPLC profile of CF;-TriPPPro-d4T after incubation in PBS, pH=7.3 (9-769 hours). Peaks were
daT d4TDP d4TTP 2 OH OH O attributed by co-injection and/or t; of reference compounds.
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Scheme 1: Phosphorylation to the viral RT inhibitor d4TTP and the bypass by the TriPPPro approach.!®! /\
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The TriPPPro Hydrolysis Concept ~ =
. ' | ! | ! | ' | ' | ! | ' | ' | ! |
= Based on two acceptor substituted benzyl esters attached to the y-phosphate 4 6 8 10 12 14 16 18 20
= Aroyl residues used as lipophilic masking units te/ Min
= Upon enzymatic cleavage of the phenolic aroylester, a strong donor substituent was formed Figure 2: lon-pair RP-HPLC profile of CF,-TriPPPro-d4T after incubation in PBS with porcine liver esterase (PLE),
— benzyl bond is cleaved which led to an masked intermediate 0.5 mg/mL, pH=7.3 (0—20 hours). Peaks were attributed by co-injection and/or t; of reference compounds.
— Repetition of this process released NTP
o i = s — Highly selective formation of d4TTP in PBS and with PLE

o)@ ) OJ\O\ ) L OXJK@L ) — Enzymatically triggered cleavage process accelerates hydrolysis
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L Scheme 2: General structure and proposed hydrolysis pathway of aroyl-containing TriPPPro-compounds.”] y H 23+ 13 0.8+0.4 <15 min 831 + 59 22.0+1.9
- . Table 1: First order hydrolysis half-lives of TriPPPro-compounds and intermediates in different media. a) phosphate
: buffer, pH=7.3, 50 mM; b) Human T-lymphocyte cell extract, pH=6.9; c) in PBS with porcine liver esterase, 0.5 mg/mL.
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Scheme 3: Reagents and conditions: 1) 5-Chloro-saligenylchlorophosphite, DIPEA, CH;CN, -20 °C—rt, 3.5 h; 2) t-BuOOH, . _ L _
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